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The electrostatic contribution to the bending moduli and spontaneous curvature of monolayers formed by
ionic surfactants in solution is calculated for all salt concentrations, ranging from no added salt~counterions
only! to excess salt. This is accomplished using a perturbative expansion in curvature of the free energy of the
Poisson-Boltzmann cell model, which is shown to give precisely the same results for the moduli as would an
alternative calculation employing moments of the transverse pressure profile of the electric double layer. With
this treatment, it is possible to quantify the dependence of the moduli and spontaneous curvature on surfactant
concentration alone~i.e., with fixed average salt concentration!, a point of central importance to the validity of
the flexible surface model in the description of ionic surfactant systems. A manifestation of the counterion
condensation phenomenon is also observed, as the monolayer rigidity saturates and becomes independent of
the surface area per ionic headgroup.@S1063-651X~96!03810-X#

PACS number~s!: 68.10.Et, 82.65.Dp, 62.20.Dc

I. INTRODUCTION

The curvature energy concept, introduced by Helfrich@1#,
has allowed a significantly deepened understanding of the
thermodynamics of surfactant systems. Most germane to its
success in capturing the phenomenology of these complex
fluids is that it relies on a few parameters that are intuitively
appealing, such as the rigidity of membranes formed by the
self-assembled amphiphiles. This framework has been ap-
plied to a large class of systems, ranging from ‘‘simple’’
binary systems composed of nonionic surfactant and a single
solvent, to multicomponent solutions of ionic surfactant, co-
surfactant~such as alcohol!, added salt, and two solvents. To
further this understanding it is always useful, where possible,
to describe phenomenological parameters in terms of more
fundamental quantities and variables that are experimentally
accessible. The current paper is in the tradition of studies that
have sought to characterize the coupling constants of the
flexible surface model in terms of molecular quantities.

Herein, we constrain ourselves to a partial description of
systems containing ionic surfactants, partial in the sense that
it is only the electrostatic contribution to the bending moduli
that is considered. It is beyond question that intraparticle
effects ~such as the conformational entropy of the am-
phiphiles! and interparticle interactions of a nonelectrostatic
origin ~such as headgroup steric repulsion! may play a sig-
nificant or seemingly dominating role in these systems.
While several worthwhile attempts~which we shall summa-
rize shortly! have been made to incorporate a number of
these effects into a comprehensive understanding of the mo-
lecular origin of the bending moduli, the problem is that the
simplicity that the flexible surface model brought to our un-

derstanding of these systems is then confounded by a highly
complicated dependence of its phenomenological parameters
on other, more fundamental, quantities.

To consider only the electrostatics shows a bias that may
be defended in a number of ways of varying justifiability:
that the theoretical description of the electrostatics of colloi-
dal systems is~arguably! more highly developed than other
aspects, that it is not difficult to prepare systems where elec-
trostatic effects may be significant or dominating~for ex-
ample, in regimes of low or intermediate added salt concen-
tration!, and perhaps most importantly, that the present
understanding is that the main effect of adjusting the salt
concentration in an ionic system is to change the spontane-
ous curvature and bending moduli of the surfactant mem-
brane through a variation in the electrostatic screening
length. It is the last of these that provides our strongest mo-
tivation, as a phenomenological model requires one other
important ~and related! element to make it truly useful: a
connection to experimental tuning parameters. In ionic sys-
tems, adjustment of the concentration of added salt can in-
duce phase transitions and is thus often employed as an ex-
perimental control parameter, with the link to the flexible
surface model alluded to above. One of the main results of
this paper is that purely electrostatic effects of at least equal
significance may also be induced by simple adjustment of the
surfactant concentration, without changing the average salt
concentration. This suggests that a decoupling of the surfac-
tant concentration and salt concentration into conjugate ex-
perimental variables is not viable for at least some systems.
Since the coupling constants themselves are dependent on
the surfactant concentration, scaling laws based primarily on
surfactant-concentration-induced effects~such as the steric
repulsion law of Helfrich@2# for lamellar phases! are thus
problematic to invoke for such systems. Not surprisingly,
however, in regimes of high concentrations of added salt
where the electrostatics is highly screened, the conventional
picture is, to all intents, valid. Hence our stated aim will be
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to give a more complete description of the electrostatics, so
as to indicate how the flexible surface model may better be
applied to ionic systems.

In the flexible surface model, the curvature energy per
unit area of the surfacegc expanded to harmonic order is
given by

gc52kc~H2H0!
21 k̄cK, ~1!

whereH is the mean curvature,H0 is the spontaneous mean
curvature,K is the Gaussian curvature, the bending modulus
is kc , and the saddle-splay constant isk̄c . We emphasize
that in this paper we will be interested in all three bending
‘‘constants’’ that appear here:kc , k̄c , and the product
kcH0, which occurs in the coefficient of the term linear in
H above@3#. The discussion is restricted to one of surfactant
monolayers~although the results could be generalized to bi-
layers without difficulty! and to the curvature energy ex-
panded only to harmonic order~although a calculation of the
electrostatic contribution to the moduli associated with an-
harmonic terms could be made, with difficulty!. We shall not
consider here the surface tension, which in surfactant sys-
tems is commonly understood to be vanishingly small. If the
calculation is made for a given, fixed geometry~without
thermal fluctuations of the surface! then the curvature energy
and free energy are one and the same. To make a connection
to the electrostatic free energy of an ionic system, the usual
method~which we shall follow! is to begin by calculating the
electrostatic potentialc using the Poisson-Boltzmann equa-
tion for a 1:1 electrolyte

¹2c5
4pq

«
~n2

c ebqc2n1
c e2bqc!, ~2!

whereq is the protonic charge,b51/kBT, «54p«0« r is the
dielectric constant of water, andn6

c are the respective num-
ber densities of the ionic species of charge6 wherec50.
~For definiteness, we shall assume the surfactants to be an-
ionic.! In principle, we require the geometries of the plane,
cylinder, and sphere to derive the moduli~although, as we
will show that, only one of the cylinder and sphere geom-
etries is ultimately needed!. We should note at this point that
there are many well-known deficiencies in the description
offered by Eq.~2!, such as the neglect of ion-ion correlations
and finite ion size, but these we shall ignore.

Winterhalter and Helfrich@4# calculated the electrostatic
contribution to the moduli, linearizing the Poisson-
Boltzmann ~PB! equation~2! and thus working within the
Debye-Hückel approximation. As the solution to the linear-
ized PB equation for all above-mentioned geometries is well
known and relatively uncomplicated, quite simple expres-
sions were obtained in this limit, requiring low surface po-
tential ~less than around 25 mV! and thus low surface charge
density. Another, later, treatment of the linearized problem,
for surfaces of arbitrary geometry and topology, is due to
Duplantieret al. @5#. Further progress for systems with added
salt hinged on the development of solutions of the nonlinear
PB equation for cylindrical and spherical geometries or for
sinusoidal corrugations of the planar geometry. As full ana-
lytic solutions for the spherical and cylindrical geometries
are still unknown and all that is required for the calculation

of the moduli is the free energy expanded to quadratic order
in the curvatures, asymptotic analytic solutions given inde-
pendently~and using complementary methods! by Mitchell
and Ninham@6# and Lekkerkerker@7# allowed these authors
to evaluate the electrostatic contribution to the moduli using
the full nonlinear theory. Lekkerkerker@8# later rederived
these results by evaluating moments of the electrostatic pres-
sure profile of the electric double layer. Fogden, Mitchell,
and Ninham @9# considered a sinusoidally undulating
charged plane and derived the free energy for the full non-
linear theory to quadratic order in the amplitude, also ex-
tracting kc in the harmonic limit. Later, Winterhalter and
Helfrich @10# and Fogden and Ninham@11# reexamined the
predictions of the above calculations, with a particular em-
phasis on the coupling of the monolayers constituting a bi-
layer. What we wish to point out here, and our initial moti-
vation for the current work, is that all of these calculations
are in the limit ofexcess salt. In other words, the surfactant
concentration is zero and the electrostatic contribution to the
moduli is calculated for a single, isolated sheet. This would
be a valid approximation to a real system in certain regimes
of salt concentration~high! and surfactant concentration
~low!. However, without allowing for the effect of nonzero
surfactant concentration, it is unclear how good an approxi-
mation this is, how the moduli behave as the salt concentra-
tion is reduced towards the low-salt limit, and how the
moduli change as a function of surfactant concentration
alone.

An initial study to attempt to cover the broad regime in-
corporating both the weak and strong electrolyte limits is due
to Pincuset al. @12#, who investigated the undulation spec-
trum of weakly fluctuating membranes in four regions: the
linearized regime, the excess salt nonlinear regime, and in
the no-salt limit for both high and low surface charge density
~which they labeled the ‘‘Gouy-Chapman’’ and ‘‘ideal gas’’
regions, respectively!. A more detailed investigation of the
no-salt ~counterions only! limit was given by Higgs and
Joanny@13#, employing the cylindrical and undulating sheet
geometries, and a further exposition and development of the
combined results of Refs.@12,13# was given by Hardenet al.
@14#. The scaling ofkc was shown to be determined by the
relative sizes of the Debye screening length, the Gouy-
Chapman length~both to be defined in Sec. II!, and the in-
termembrane spacing of the lamellar system. The important
conclusion reached by these authors was that with excess
added salt, the long-range steric repulsion of Helfrich@2#
between the lamellae well exceeds the electrostatic contribu-
tion to the free energy, whereas in the low-salt limit the
unscreened electrostatic repulsion dominates. Recently, two
of us, with Mitchell and Ninham@15#, have given a further
investigation of the no-salt limit using the cylinder and un-
dulating plane geometries. Therein, we develop an expres-
sion for the bending modulus valid over all regimes of sur-
face charge density. We also confirm and generalize the
original suggestion of Hardenet al. @14# that a calculation of
kc from different geometries can give the same functional
form. This is important, as it indicates that the local nature of
Eq. ~1! is maintained even in the limit of unscreened electro-
static interactions. To again place the current work in a
proper context, Refs.@12–14# actually dealt with the two
extremes of excess salt and no salt, in the limits of low and
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high surface charge density. The aim of the current paper is
to allow for intermediate-salt concentrations and finite sur-
factant concentrations, at any surface charge density. This is
more appropriate to many systems, where single phases
~such as the lamellar phase! may span a very broad range of
salt and surfactant concentrations.

We now briefly summarize some other related literature.
As alluded to above, a number of important works have at-
tempted to incorporate nonelectrostatic effects into the cal-
culation of the bending moduli, notably by Szleifer and co-
workers @16–18# and by Ennis@19#. Such effects include
those of steric head-head interactions, chain packing, and
chain-oil interactions. Barneveldet al. @20# have presented
an alternative approach to the calculation of bending moduli,
employing a self-consistent field lattice model, allowing for
the finite size of the ions. A simpler, more recent approach
by Cantor@21# relies on the high-salt limit to employ a quasi-
two-dimensional mean-field approximation, where only the
interaction of the surface and the nearest ‘‘layer’’ of ions is
dealt with, in the context of the stability of bicontinuous
microemulsions. On the other hand, Odijk@22# and de Vries
@23,24# have investigated the issue of electrostatic forces in
lamellar phases. Interestingly, the most recent of these@24#
presents a calculation of the free energy of passage formation
in lamellar phases, where de Vries concludes that anhar-
monic terms in the curvature free energy play an important
role. There is also a significant body of work by Bedeaux
and co-workers@25# dealing with the statistical mechanics
and bending constants of curved surfaces. Recently, Andel-
man@26# has given a review of the literature on electrostatic
properties of membranes. On the challenging experimental
problem of measuring the electrostatic contribution to the
bending moduli, we shall reserve a discussion of this litera-
ture to a later section.

The paper is organized as follows. In Sec. II we describe
how the electrostatic free energy of the cell model depends
on curvature and make a perturbation in the reciprocal ag-
gregate radius. In Sec. III we explicitly solve the PB cell
model up to first order in curvature for cylinders and spheres
and present the results for the bending moduli. These are
compared with existing results in the excess- and no-salt lim-
its. We also show calculations for a specific system, indicat-
ing the dependence of the moduli on the salt and surfactant
concentrations and surface charge density. We conclude with
a discussion of our results in Sec. IV.

Finally, we note that a companion paper by two of us@27#
contains a calculation ofkc in the general case of all salt and
surfactant concentrations, employing the rippled-plane ge-
ometry. We shall make a connection to this work herein
whenever appropriate.

II. ELECTROSTATIC FREE ENERGY
OF THE CELL MODEL

A. Curvature dependence of the free energy

As stated in the Introduction, some previous calculations
of electrostatic contributions to the elastic moduli have dealt
with the excess-salt case, where the bending free energy of a
single isolated surface may be considered. In order to deal
with the situation of a nonzero surfactant concentration at a
general salt concentration, an additional length scale must be

introduced. This is done by constraining the ions in some
way, naturally introducing the new length scale~the width of
the water layer!. In the case of no added salt, the exact so-
lution of the PB equation is known for the concentric cylin-
drical geometry@31#, allowing the calculation ofkc ~and
kcH0, if desired!. However, there is no such exact solution to
the PB equation extant for the cylindrical or spherical geom-
etries in the case of added salt.

The usual method of introducing nonzero aggregate con-
centration~or particle concentration, in the case of macroion
systems! for charged systems with ionic atmospheres is the
Poisson-Boltzmann cell model, which has a long history in
colloid science@32,33#. In this model, the system is divided
into electroneutral cells, each with a macroion or aggregate
surrounded by an aqueous region containing the ions. The
cell size is directly determined by the macroion or aggregate
concentration. A schematic representation of the cross sec-
tion of such a cell, equally applicable to the cylindrical and
spherical geometries, is given in Fig. 1~a!. Because of elec-
troneutrality, the electric field vanishes at the cell boundary
~i.e., dc/dr50) at a distanceR1d from the center of the
aggregate, whereR is the aggregate radius. The surface

FIG. 1. ~a! Cross section of the cylindrical and spherical cell
models.~b! Planar reference geometry. Note that in fact it is the
subsystem fromr50 to d0 that forms the reference for the per-
turbed state.
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charge density is2s ~wheres.0). It will be convenient to
conceptualize the interior as being filled by oil in the context
of the current problem; we will assume no electrostatic cou-
pling across the interior. All charged groups on the surfactant
will be idealized to lie on the surface atR; however, the
surfactant concentration will be introduced through a finite
hydrocarbon tail length ofl , extending into the interior. We
also assume that there are no free surfactant monomers in the
aqueous solution. The planar geometry at finite concentration
is the reference state and is shown as Fig. 1~b!. This system
has been studied extensively@28#, and a treatment with
boundary conditions appropriate to the current work has
been given by Jo¨nsson and Wennerstro¨m @29#. For reference,
we recount this briefly in Appendix A.

We seek now a curvature expansion for the electrostatic
free energy per unit area of surfaceg5G/A of the cylindri-
cal and spherical cell models, i.e., an asymptotic series in
1/R @30#. At least in principle, we shall need to consider both
the cylindrical and spherical geometries in order to calculate
all of kcH0, kc , andk̄c . The free energy is given by the sum
of the electrostatic internal energy and entropy contributions

G5Eel2TS, ~3!

where

Eel5
«

8pEVdVu¹cu2. ~4!

In order to calculate the curvature dependence ofg at fixed
total monolayer surface area in the system Atot, we make the
following connection @34# for both the cylindrical and
spherical geometries:

S ]g

]~1/R! D
Atot

52R2S ]Vi

]R D
Atot

S ]g

]Vi
D
Atot

52
R

A HEel1
1

bEVdV
3@n2

c ebqc1n1
c e2bqc# r

R1dJ , ~5!

whereA is the surface area of a single aggregate andVi and
V are the volumes of the aggregate interior and aqueous
region, respectively. In Appendix B 1 we show how the
above may be manipulated into the simpler form

S ]g

]~1/R! D
Atot

5
x

11x

«

4p
RE

R

R1d

drFRr 2S rRD xG S dc

dr D
2

,

~6!

wherex51 for the cylindrical geometry andx52 for the
spherical geometry. This last equation is central to our treat-
ment of the problem at hand. No assumption has been made
in its development other than the overall electroneutrality of
the cell. Although this equation is strictly equivalent to Eq.
~5!, the cancellations that occur in its derivation allow the
negativity of the derivative to be evident and, as will be
shown later, permit determination of the curvature energy up
to quadratic order using only the first-order perturbations for

the potential. We emphasize that keepingAtot fixed while
changingR means that the length of the cylindersL and the
numberof spheres in the respective systems will change in
compensation@30#. We may for convenience choosec50 at
r5R1d, although, by gauge invariance, we could take it to
be any constant value there (cc , say!, so that

n6
c 5nce

7bqcc. ~7!

It is useful now to switch to dimensionless quantities and
to also define quantities associated with the reference planar
state. The dimensionless potential isf5bqc, and d0 and
n6,0
c will be the appropriate planar quantities. It will be also
useful to definea05n2,0

c /n1,0
c and to introduce the length

@35#

lD[k215S «

2pn1,0
c bq2D 1/2, ~8!

which we then use to scale other lengths as

x[k~r2R!, D[kd, b[1/~kR!. ~9!

In scaled form, the PB equation then becomes

f91x
b

11bx
f852S n2

c

n1,0
c ef2

n1
c

n1,0
c e2fD , ~10!

wherex50 corresponds to the planar case and the derivative
of the scaled potentialf(x) with respect tox is indicated by
the prime. The boundary conditions are then

f~D !50 , ~11a!

f8~D !50 , ~11b!

f8~0!52
lD

lGC
, ~11c!

where in the last equation

lGC5
«

2pbqs
~12!

is the Gouy-Chapman length. Finally, it will be convenient to
give in scaled form Eq.~6!, which is, for the cylindrical case,

S ]g

]~1/R! D
Atot

52
«

8pb2q2E0
D

dxxS 21bx

11bxD ~f8!2, ~13!

and in the spherical case

S ]g

]~1/R!
D
Atot

52
«

8pb2q2E0
D

dx

3xF 4
3 b

2x214~11bx!

11bx
G ~f8!2. ~14!
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B. Perturbation scheme for the electrostatic potential

The planar state (b50) is taken as the reference, and we
make the perturbation of the free energy in powers ofb, up
to harmonic order. It is sufficient for our purposes that the
expansion be asymptotic, as the curvature expansion is itself
only sensible in the asymptotic limitb→0. Over the past ten
years or so, there have been several works dealing with the
perturbative solutions of the cylindrical cell model, develop-
ing bounds on exact solutions of the PB equation@36#, for
the counterions-only case@37#, or perturbations around this
solution @38#. The following differs from these in the sense
that it makes no assumption regarding the surface charge
density and provides exact solutions to the given order in
b. We simultaneously deal with the spherical geometry. We
also note that the utility of the following treatment of the
potential and free energy of the cell model is not restricted to
the current problem of monolayer bending elasticity, but
could be applied to other systems where the solution of the
PB equation in cylindrical or spherical geometry is required.

As stated, we impose that the total areaAtot of surface is
held fixed on bending and for the present, we also impose a
fixed surface charge density2s, returning later to the issue
of alternative boundary conditions at the surface~such as
constant surface potential or mixed conditions!. The bound-
ary densitiesn6

c are also, in general, allowed to deviate from
their planar values. As it happens, it is sufficient to expand
the potential and boundary quantities up to linear order in the
curvatures to calculate the moduli. We then have

f5f01f1b1•••, ~15a!

D5D01D1b1•••, ~15b!

n6
c 5n6,0

c 1n6,1
c b1 . . . , ~15c!

and for convenience we will writea i5n2,i
c /n1,0

c and
g i5n1,i

c /n1,0
c . Thus the PB equation, as given in~10!, be-

comes to zeroth and first orders

f0952~a0e
f02e2f0!, ~16a!

and

f1922~a0e
f01e2f0!f152xf0812~a1e

f02g1e
2f0!.

~16b!

It is also useful to expand thenc andfc5bqcc that appear
in ~7! in the fashion of Eq.~15!, and for later convenience to
assignh i[fc,i andn i[nc,i /2nc,0 . The boundary conditions
of Eq. ~11! imply

f0~D0!50 , f08~D0!50 , ~17a!

f1~D0!50 , f18~D0!52D1f09~D0!, ~17b!

and

f08~0!52
lD

lGC
, f j8~0!50 ~ j51,2, . . .!. ~17c!

C. Constraints

In order to close the problem, two additional constraints
must be imposed, which may be chosen in any physically
reasonable fashion. Here, we consider three possibilities of
interest.

1. Fixed water and salt chemical potentials

Marcus @39# originally showed the relationship between
the boundary values of the ion densities and electrostatic
potential, and the chemical potentials of salt (ms) and water
(mw). These are~ignoring standard chemical potential terms!

bms52lnnc ~18!

and

bmw522vwnc~coshfc21!, ~19!

where vw is the molecular volume of water. Thus, fixing
bothms andmw on bending the surface requires thatnc and
fc remain constant, which simply means thath j50 and
n j50 for j51,2, . . . . So, forthis case, it is only the chemi-
cal potential of amphiphilema that changes with curvature.

2. Fixed salt chemical potential and amount of water

Alternatively, we may choose to relax the constraint on
the osmotic pressure and only keepms fixed, so thatn j50.
This then allows the freedom to satisfy another requirement,
such as conservation of the total amount of water in the cell,
i.e., the volumeV, on bending the surface. WithAtot also
fixed, it is straightforward to show that we require

kV/A5DS 11
x

2
Db1

x21

x11
D2b2D , ~20!

which in terms of the perturbation means

D152
x

2
D0
2 . ~21!

3. Fixed amounts of water and ions

Relaxing totally the constraint on all chemical potentials
allows us to fix both the total number of water molecules and
total number of ionsN in a cell, where

N5E
V
dV~n2

c ef1n1
c e2f!. ~22!

Hence, in this case the amounts of all of the components and
their concentrations are preserved on bending. Using Eqs.
~16! and ~17!, it is possible to show that Eq.~22! is equiva-
lent to stipulating that

E
0

D0
dx@xx~f08!222f08f18#54~a11g1!D0 . ~23!

This is the most challenging case, of the three that we con-
sider, to solve. We note also that an interesting fourth possi-
bility is the case of fixedmw andN; however, we leave that
for a future study.
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III. BENDING MODULI

A. Connection to the curvature free energy and moduli

We now employ the perturbation scheme outlined above
to determine the bending moduli. Expanding Eqs.~13! and
~14! to first order gives

S ]g

]~1/R! D
Atot

52
«

8pb2q2E0
D0
dx$2xx~f08!2

1x@4xf08f181~x22!x~f08!2#b1•••%.

~24!

Comparing with the curvature free energy of Eq.~1! yields

kcH05
«

8pb2q2E0
D0
dxx~f08!2, ~25a!

kc52
«

8pkb2q2E0
D0
dxx@4f08f18

~cyl!2x~f08!2#,

~25b!

and

k̄c52
«

4pkb2q2E0
D0
dxx2~f08!2, ~25c!

where in~25b!, f18
(cyl) indicates the appropriate quantity for

the cylindrical case. In fact, the derivation of the last formula
is interesting, and Appendix B 2 is devoted to it. There we
also show thatf1

(sph)52f1
(cyl) ~for all of the cases considered

in Sec. II C!. Hence it becomes clear that we requireeither
the cylindrical or spherical geometry in order to solve the
current problem, but not both, a point not at all obvious at
the outset. Note also that, generally,kcH0 and k̄c are inde-
pendent of the perturbation on the planar solution and hence
are totally insensitive to the constraints imposed on bending
the surface.

B. Comparison to moments of the transverse pressure profile

An alternative method for calculation of the bending
moduli is the evaluation of moments of the transverse pres-
sure profile. It was initially introduced by Kirkwood and
Buff @40# in the context of the surface tension of the liquid-
vapor interface, and much later Helfrich@41# made the con-
nection to the bending moduli. This was later extended by
Szleiferet al. @18#. Winterhalter and Helfrich@4,10# and Le-
kkerkerker@8# have also employed this method in the calcu-
lation of ionic surfactant bending moduli.

The transverse pressure profile of the double layer is
given by

P~x!5
«k2

8pb2q2
~f8!22

1

b
@n2

c ef1n1
c e2f#x

D . ~26!

The bending moduli are then

kcH05
1

2k2E
0

D0
dxxP0 , ~27a!

kc52
1

k2E
0

D0
dxx

]P~sph!

]~2/R!
U
R→`

, ~27b!

and

k̄c52
1

k3E
0

D0
dxx2P0 , ~27c!

whereP0 andP (sph) are the planar and spherical pressure
profiles, respectively. Now, with Eq.~A2!, we have that

P0~x!5
«k2

4pb2q2
~f08!2. ~28!

It is then by inspection that we see that Eqs.~27a! and~27c!
are identical to~25a! and ~25c!, respectively, for all of the
constraints that we consider. The proof that the isomorphism
holds also in the case ofkc is more involved. The explicit
prediction of Eq.~27b! is

kc52
«

8pkb2q2E0
D0
dxx„f08f1812$2@a1e

f01n1e
2f0#x

D0

1~a0e
f02e2f0!f1%…, ~29!

in which all symbols with subscript 1 refer to the spherical
case. This can be expressed most simply, for the purposes of
the later calculations, in terms of the variablesh1 andn1 as

kc5
«

8pkb2q2E0
D0
dx$f08f11x~h1@f09#x

D02n1@f08#2!%.

~30!

However, Eq.~29! could also be reexpressed using the fact
that

2@a1e
f01n1e

2f0#x
D01~a0e

f02e2f0!f1

5
1

2
f08f182E

x

D0
dx~f08!2, ~31!

again with all subscripts 1 in Eqs.~30! and~31! related to the
sphere. From the fact thatf1

(sph)52f1
(cyl) , Eq. ~25b! follows

in a straightforward manner. So the predictions for the bend-
ing moduli of moments of the transverse pressure profile and
a curvature expansion for the electrostatic free energy will be
identical for all cases that we consider.

C. General solution for f1

In order to fully expresskc in terms of planar quantities,
we need to find a general solution forf1 in terms off0. As
detailed above and in Appendix B 2, withf1

(sph)52f1
(cyl) we

may choose to evaluatekc using either the cylindrical or
spherical geometry: we choose the latter and substitute into
Eq. ~30!. The other two moduli rely only on the well-known
planar solution summarized in Appendix A. We describe
now the analytic solution forf1 in the spherical cell model.

Equations~16a! and ~16b! may be combined to give
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d

dx F ~f08!2
d

dx
~f1 /f08!G522~f08!212

d

dx
~a1e

f01g1e
2f0!.

~32!

Applying appropriate boundary conditions from~17a! and
~17b!, two integrations then give the general solution for
f1 in terms of the planar solutionf0:

f1522f08E
x

D0
dx~f08!22E~x!

1h1f08E
x

D0
dx~f08!22@f09#x

D02n1~D02x!f081Cf08 ,

~33!

where we have newly definedC[f18(D0)/f09(D0) and
E(x), where

E~x!5E
x

D0
dx~f08!2. ~34!

We note thatC is unconstrained by any boundary condition
at x5D0 in the case of constantms andmw ~Sec. II C 1!, but
that we must setC5D0

2 for the other two cases. We also bear
in mind the other boundary conditions and constraints previ-
ously laid out in Sec. II above.

D. Formal expression for the bending modulus

It is useful now to provide formal expressions forkc in
terms of planar quantities, valid for all cases discussed in
Sec. II C. This is given by substitution of Eq.~33! into the
expression~30! and also usingf18(0)50. The resulting ex-
pressions are naturally phrased in terms of the integrals

W~n!5E
0

D0
dx~f08!21

d

dx
@~f09!21En~x!#. ~35!

For convenience, we write Eq.~30! as

kc[
«

8pkb2q2
I. ~36!

The integralI is then broken up into the sum of three parts

I5I11h1J21n1J3 , ~37!

where

I152W~2!, ~38a!

J25f09~D0!~D0
2/22W~1!!, ~38b!

and

J352f08~0!@f09~0!#21E~0!. ~38c!

We must eliminate the two variablesh1 and n1 from I in
terms of the applied constraints. In the case of constantms
andmw , with h15n150, we have thatI5I1. In the other
two cases, we use the constraintC5D0

2 to eliminateh1. This
then gives

I5I11I21n1K3 , ~39!

with

I252
2

W~0! ~D0
2/22W~1!!2 ~40!

and

K352@f09~0!#21H YW~0! @D0
2/22W~1!#1f08~0!E~0!J ,

~41!

where

Y5f08~0!2D0f09~0!. ~42!

So, for the case of fixedms andV, n150 and the modulus
is given by Eq.~36! with I5I11I2. We note thatI2 is
strictly non-negative, as its denominator is negative. This
indicates that the constraint of fixingV leads to an increase
in kc and thus to anincrease in the curvature free energy.
This important point indicates that indeed the fixedms and
mw case has a natural meaning in the definition of a bending
modulus, as the imposition of, for example, a volume-fixing
constraint gives a higher free energy. Therefore, in an uncon-
strained real system, thermodynamics dictates that maintain-
ing constantms andmw on bending will be preferential to the
combination of constantms andV.

For the fixedN andV case, we must eliminaten1 using
Eq. ~23!. This ultimately leads to

I5I11I21I3 , ~43!

with the extra contributionI3 now given by

I35
2H YW~0! @D0

2/22W~1!#1f08~0!E~0!J 2
Y2

W~0! 1Z
, ~44!

where

Z5@f09~0!#2$E~0!1@f09~0!#21@f08~0!#318~a011!D0%.
~45!

We also note thatI3>0, so that the constraint of fixed com-
position gives the largestkc and thus the highest-energy pen-
alty for bending the surface. So, to summarize,
kc5(«/8pkb2q2)(I11I21I3), with the appropriate combi-
nation of theIi determined by the imposed constraints. Spe-
cifically, I350 for the fixedms andmw and fixedms and
V cases, and alsoI250 in the former case.

We thus now have all ofkcH0, kc , andk̄c in terms of the
known planar solution of the PB equation and the problem is
formally solved. If we wished to give these solutions in
terms of known functions, it would be a matter of substitut-
ing the expressions forx andf08 , given as Eqs.~A3! and
~A4!, respectively, into the above formulas, and then per-
forming the appropriate integrations. However, this leads to
unwieldy expressions that are of marginal value. It is more
useful, in our view, to proceed from this point on by numeri-
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cal evaluation of, or alternatively by using analytical ap-
proximations to, the expressions that we have developed.

We also point out that we have checked our expressions
in the limits of excess salt (a051) and counterions only
(a050) and they do in fact recover the correct limiting
forms, which may be found in Refs.@6–15#. We note here
though that bothI2 andI3 above vanish in the excess salt
limit ~as they must!. In fact, W(0);exp(const/F) and
W(1);1/F in the F→0 limit ~whereF is the surfactant
volume fraction!, allowing one to explicitly deduce the as-
ymptotic behavior ofI2 and I3 in the excess-salt limit, if
desired. In the zero-salt limit,I3 vanishes and the two cases
that fixV become degenerate, as they should for counterions
only. Finally, we note that we have also obtained an expres-
sion forkc in the case of constant chemical potentials of salt
and water using the rippled-plane geometry, the calculational
details of which are given in Ref.@27#. The result agrees
precisely with that which we obtain in the current paper for
this case.

E. Evaluation of the moduli

The formulas forkcH0 and k̄c given by Eqs.~25a! and
~25c!, and the expressions forkc given in Sec. III D are, via
substitution of Eq.~A3!, functions of the three state variables
lD , d0, anda0. We eliminate these in terms of the planar-
state characteristics relevant to our purposes:lGC, defined in
Eq. ~12! and given by combining Eqs.~A4! and ~17c!, the
volume fraction of surfactantF5 l /( l1d0), and the average
concentration of saltC in molar (M ), which is given by

C51023
n2,0
c

NAD0
E
0

D0
dxef0, ~46!

whereNA is the Avogadro number. We must also choose
numerical values for the system parameters. We takel59.5
Å, the area per charged surfactant headgroup as 67 Å2, and
T5298 K. These numbers are relevant to an AOT@sodium
bis~2-ethylhexyl! sulfosuccinate# salt-water system@43#.

FIG. 2. Bending moduli as a function of average salt concentra-
tion C, for fixed values of surfactant volume fraction
F50, 0.1, 0.2, 0.3, 0.4, and 0.5.~a! kc . ~b! kcH0. ~c! k̄c .

FIG. 3. Bending moduli as a function of surfactant volume frac-
tion F, for fixed values of average salt concentration C50, 0.0025,
0.005, 0.01, 0.02, 0.04, 0.06, 0.1, 0.2, 0.3, 0.5, and 1.0M. ~a! kc . ~b!

kcH0. ~c! k̄c .
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However, we emphasize that our aim here is not to make
specific predictions regarding a given system, but rather to
indicate the general characteristic behavior of the moduli,
and thus these values should be regarded as nominal.

The numerical evaluation was done using a program writ-
ten for the MATHEMATICA package, which performs the
above change of variables and evaluates the integral expres-
sions for the moduli in a straightforward manner. First, in
Fig. 2, we show how the moduli depend on the salt concen-
tration C, at fixed surfactant volume fraction, in the range
F50 ~the excess-salt case! to F50.5. In Fig. 3 we show
how the moduli change withF at fixed average salt concen-
tration, in the rangeC50 ~counterions only! to C51.0M .
Note the dramatic effect as the salt concentration is reduced:
we shall shortly return to this point in our forthcoming dis-
cussion in Sec. IV. We note here that we have used the
definition ofkc for fixedms andmw in Figs. 2 and 3. In Fig.
4, we make a comparison between the three alternative defi-
nitions of the bending modulus, indicating that indeed the
fixed ms ,mw alternative will give the lowest mean curvature
penalty. In Fig. 5 plots are given for 2kc1 k̄c ~with kc again
taken for the case of constant chemical potentials of salt and
water!. This quantity is important, as it indicates whether the
electrostatics acts to stabilize (2kc1 k̄c.0) or destabilize
(2kc1 k̄c,0) the monolayer at harmonic order in the curva-
tures. Clearly, our results indicate that either situation is a
possibility, depending on the regime of salt and surfactant
concentration: again, we return to this important point later,
in Sec. IV.

F. Approximate formulas at low volume fraction

For practical applications, it may sometimes be preferable
to use analytical approximations rather than evaluation of the

full integrals. This is particularly so near the limit of excess
salt, where many phases of interest are commonly found. It
may then suffice to consider the existing excess-salt formulas
@6–9#, embellished by their first-order correction inF. Such
expansions may be found from our integral expressions
above. Without giving any details of their development, we
exhibit these below. In order to harmonize these with the
existing excess-salt formulas, we now take the following
definitions: k̃5@8pbq2(103NAC)/«#1/2 gives the ‘‘usual’’
definition of the inverse Debye length in the excess salt limit
and s52/(k̃lGC) is the dimensionless variable used by
Mitchell and Ninham@6# andw5(11s2/4)1/2 that by Lek-
kerkerker@7,8# ~which he denotes asq) in their derivations
of the excess-salt formulas. We obtain

kcH05
«

4pb2q2 H 2ln@~11w!/2#

2
~s/2!4

w~s/21w!1/2@~11w!/2#3/2S lGC

l DF1•••J ,
~47!

k̄c52
«

pk̃b2q2 H f ~w!1s~w2s/221!

3S 12 f ~w!1
1

w
ln@~11w!/2# D S lGC

l DF1•••J ,
~48!

where

FIG. 4. Comparison of the bending modulus under different
constraints for~a! F50.2 and~b! C50.1M . On both graphs, the
lower curve corresponds to fixedms andmw , the middle curve to
fixed ms andV, and the upper curve to fixedV andN.

FIG. 5. Behavior of the ‘‘stability parameter’’ 2kc1 k̄c , given
as a function of ~a! the average salt concentration~for fixed
F50, 0.1, 0.2, 0.3, 0.4, 0.5), and~b! the surfactant concentra-
tion ~for fixedC50, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.06, 0.1, 0.2,
0.3, 0.5, and 1.0M ).
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f ~w!5D1„ln@~11w!/2#…5E
0

ln[ ~11w!/2]
dt

t

et21
~49!

andD1(x) is a Debye function~related to the dilogarithm!.
For kc , we find that the fixedms ,mw and ms ,V cases

reduce to the same Taylor expansion, as terms arising from
I2 above are subdominant when expanded for low volume
fraction @i.e., the expansion contains terms of the form
exp(2const/F)#. For these two cases, we obtain

kc5
«

2pk̃b2q2 H ~w21!~w12!

w~w11!

2
s2~w2s/2!1/2~w21!@w1212~2w11!/w2#

2A2w~11w!3/2

3S lGC

l D F1•••J . ~50!

In the case of fixedN andV, it happens thatI3 does in fact
have a Taylor expansion. Writing for this case
kc5 k̃c1dkc , where k̃c is the right-hand side of~50!, we
have that

dkc5
«

pk̃b2q2
~s/2!5

w2~11w!2 S lGC

l DF1•••. ~51!

G. Counterion condensation

We now investigate the effect of changing the surface
charge density. This we do in relation to the phenomenon of
counterion condensationand the associated concept of the
effective charge, a theory attributed to Manning@44# and
well known in the polyelectrolyte literature@33,37,38,45#. It
has also been discussed in regard to lamellar liquid crystals
previously by Jo¨nsson and Wennerstro¨m @29# and also by
Alexanderet al. @46# in the context of charged colloidal flu-
ids. Recently, Gisleret al. @47# have made measurements on
latex suspensions that confirm the concept for these systems.
The basic notion is that the nonlinear PB equation obtains, at
large distances from the surface~near the cell boundary!, an
asymptotic solution that is that of the linearized PB equation,
with an effective surface charge densitythat takes into ac-
count the fact that near the surface there is a high density of
accumulated counterions. As the surface charge density is
increased, the effective charge saturates and becomes inde-
pendent of the ‘‘bare’’ charge on the surface: this is the
signature of counterion condensation.

Here we investigate whether the surfactant bending
moduli also display such a saturation phenomenon. If so,
then this would lead to a significant simplification of their
dependence on the governing molecular parameters and thus
make the understanding of ionic surfactant systems relatively
straightforward. To this end, in Fig. 6 we plot the moduli as
a function ofs ~in a physically reasonable range, withkc for
fixed ms ,mw), for both fixedF andC. The immediate con-
clusion is that the three moduli behave in a remarkably dif-
ferent fashion and it is onlykc that demonstrates a true satu-
ration. We shall discuss this interesting phenomenon in the
following section.

IV. DISCUSSION

The introduction of nonzero surfactant concentration into
the calculation of the electrostatic contribution to the bend-
ing moduli has been seen to be significant, from the results
presented above, in two ways. First, increasing the surfactant
concentration reduces the dependence of the moduli on salt
concentration: this is clear from Fig. 2. Second, at fixed-salt
concentrationthe bending moduli change significantly with
surfactant concentration, as shown in Fig. 3. Furthermore,
the notion that it iskcH0 that is more sensitive to system
changes thankc or k̄c is seen to be true, if ever, only in
certain regimes: low-salt concentration with high surfactant
concentration and low surfactant concentration with high-salt
concentration; in all other regimes the two other moduli are
as least as sensitive askcH0.

All of these results point towards a caveat in applying the
flexible surface model to ionic surfactant systems. First, the
surfactant concentration dependence of the moduli is prob-
lematic, as a considerable amount of knowledge regarding
these systems is based on scaling laws where the bending
moduli are explicitly assumed to be independent of the sur-
factant concentration. The undulation free energy of Helfrich
@2# for lamellar phases and the ideal scaling law of Porte
et al. @48# for sponge phases are prominent examples of this.
To see the bending moduli andF coupled therefore calls for
caution in the application of such laws. Second, it is often
argued~indeed, as by some of us@49#! that the monolayer
spontaneous curvature plays a dominating role as a control-
ling parameter in surfactant systems, by determining the sta-
bility of the competing phases. We see here that apart from
in certain special limits, the other moduli are as least as
sensitive to changes in system parameters. This complicates
the picture for ionic systems; for example, changes in mono-
layer topology may be induced through changes in either salt
or surfactant concentration, judging by our results fork̄c , as
this couples to the Gaussian curvatureK.

We have also seen, in Fig. 4, that the choice of constraints
on bending the surface will significantly affect the value of
the bending modulus. As we have argued throughout, it ap-
pears as though curvature changes with the salt and water
chemical potentials fixed are least penalized. Note the inter-
esting behavior, in Fig. 4, of the upper two curves at the
extremes of both vanishing and excess salt.

Another point of interest is as to whether the system is
stabilized or destabilized, at harmonic order in the curva-
tures, by electrostatic effects. Referring to our results pre-
sented in Fig. 5, we deduce that electrostatics acts to stabilize
the system at high salt and surfactant concentrations, but at
low concentrations can play a destabilizing role. In the latter
case, higher-order~anharmonic! terms in the curvature en-
ergy are required to stabilize the system, a point to which we
shall return shortly.

The effect of tuning the surface charge density, as de-
picted in Fig. 6, does give an interesting indication that the
three moduli do behave distinctly. The bending moduluskc
does seem to saturate and thus behaves like a ‘‘far-field’’
quantity. In the spirit of Manning’s theory, it could well be
calculated from the formula of Winterhalter and Helfrich@4#
developed in the Debye-Hu¨ckel limit, but with an effective
surface charge density. In contrast,k̄c appears to not be fully

54 3993BENDING OF IONIC SURFACTANT MONOLAYERS



saturated, even fors51.6 Cm22, and saturation forkcH0
seems far off. This hierarchy can in some way be understood
from the expressions for the moduli given as Eq.~25!. It is
clear thatkcH0 is ‘‘more’’ of a near-field quantity thank̄c ,
as the former is the first, while the latter is the second, mo-
ment of the same quantity~essentially the square of the elec-
tric field!. Thus there is a relatively heavy weighting in
kcH0 for the near-field~condensed! counterions, but this is
reduced fork̄c . It is not so clear whykc behaves as the
‘‘farthest-field’’ quantity, as it depends in a more compli-
cated way on the planar potential. However, our results
clearly show this to be the case, indicating a subtlety in the
consideration of the condensation phenomenon for quanti-
ties, such as the bending moduli, which involve integration
over the ionic atmosphere.

A question that we have only partially answered so far is
an important one: In terms of the electrostatic contribution,
how valid is the harmonic approximation to the curvature

energy? We have indicated above that anharmonic terms
might well be necessary to stabilize certain systems, support-
ing the suggestion of de Vries@24# in regard to passages in
lamellar phases, and also that made previously by some of us
in the context of microemulsions and sponge phases@50#. In
order to rectify this, we show in Fig. 7 plots for]g/](1/R)
for the cylindrical geometry, calculated from Eq.~6! using a
full numerical solution of the Poisson-Boltzmann equation.
In Fig. 7~a!, we give such plots for the three constraints, for
F50.372 andC50.363M . Plotted also are the predictions
of the harmonic approximation, which appear as tangent
lines at the point 1/R50. Note the deviation as the radius is
decreased, but also that even atR510 Å, there is only ap-
proximately a 10% difference between the full curves and
the corresponding harmonic approximations. The difference
is more dramatic for the case of Fig. 7~b!, where we have
made a similar plot, but forF50.5 andC50.05M . The
deviations are much sharper and the harmonic approximation

FIG. 6. Dependence of the moduli on the magnitude of the surface charge densitys. Plots ~a!–~c! are for C fixed at 0.1M , and
F50, 0.15, 0.25, 0.3, 0.4, and 0.5;~d!–~f! for F fixed at 0.2 andC50, 0.005, 0.02, 0.04, 0.06, 0.08, 0.2, 0.5, and 1.0M .
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soon breaks down as the radius of curvature is decreased,
other than for the case of both salt and water chemical po-
tentials being fixed, where it remains quite reasonable. Note
also that the full curves for the other two constraints effec-
tively collapse onto one another.

We now turn to discuss some recent experimental studies
that have attempted to measure the bending moduli of ionic
surfactant layers. The measurement of the rigidity of surfac-
tant layers presents considerable difficulties, but recently
progress has been made using various experimental methods.
Kellay et al. @51# give an extensive review of such measure-
ments, in particular cataloging in some detail recent mea-
surements ofkc for AOT systems, and we refer the reader to
their list of references. The methods used include neutron
scattering, the Kerr effect, laserT-jump experiments, and
time-resolved flourescence quenching. Kellayet al. them-
selves employ ellipsometry to measure the moduli of AOT
droplet systems. However, as shown in the comparison of
results given in Ref.@51#, the range of reported values for
kc , even for exactly the same system, can differ by an order
of magnitude and are therefore problematic to analyze. An
interesting recent development has been the use of quadru-
pole splittings in NMR spectra in the measurement ofkc for
lamellar phases of ionic surfactant@52,53#; however, these
measurements as presented are mainly concerned with non-
electrostatic effects, such as the chain length of added cosur-
factant @53#. Kegel et al. @54# have recently used ellipsom-
etry to measure such effects. In contrast, recent papers have

appeared that deal with systems where a small amount of
ionic surfactant is added to a nonionic system and thus the
aim is to directly measure electrostatic effects. Schoma¨cker
and Strey@55# have made measurements, using light scatter-
ing, of the Bragg-peak shift of a nonionic lamellar phase
upon the addition of ionic surfactant. These results are in a
regime~small amount of added salt, low surfactant concen-
tration! where our results would be useful for a full analysis
@56#. Also, we note that Rajagopalanet al. @57# have inves-
tigated the effect of adding a small amount of ionic surfac-
tant to a nonionic system; however, these authors offer the
alternative interpretation of electrostatic effects as a curva-
ture stress on the nonionic monolayer and hence electrostat-
ics and elasticity are effectively decoupled in their treatment.

So we await further progress on the experimental front.
There is also more that can be done at the theoretical level.
Some extensions are relatively straightforward, such as the
allowance for a change in the surface charge density on
bending ~corresponding to constant surface potential or
mixed boundary conditions!, while others, such as the ex-
plicit calculation of the moduli associated with anharmonic
curvature terms@27#, are much more involved.

V. CONCLUDING REMARKS

We have, herein, presented results that extend our knowl-
edge of the dependence of the phenomenological parameters
of the flexible surface model on the fundamental quantities
relevant to ionic surfactant systems. The important conclu-
sion that we have drawn is that the electrostatic contribution
to the moduli is significantly dependent upon the surfactant
concentration, even for systems with added salt. We have
also provided perturbative solutions to the Poisson-
Boltzmann cell model for cylindrical and spherical systems,
investigated the effect of counterion condensation on the
moduli, and considered the validity of the harmonic approxi-
mation to the electrostatic curvature free energy. All of these
results point to yet another manifestation of the subtlety of
electrostatic effects in colloidal systems; despite this we con-
clude that the flexible surface model remains an attractive
approach in rationalizing the behavior of surfactants in solu-
tion.
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APPENDIX A: PLANAR SOLUTION

Here we briefly recount the solution of the PB equation
for the geometry of two charged planes with intervening salt
solution. The treatment here is based on that by Jo¨nsson and
Wennerstro¨m @29#, where ~unlike other studies! it was not
assumed that an equilibrium existed between the system and
a reference salt solution, so that the system is self-contained:
this is the situation most relevant to the current problem. All
symbols~unless stated otherwise! are as defined in Sec. II of
the main text. The boundary conditions are those given in
Eqs.~17a! and ~17c!.

FIG. 7. Plot of the curvature dependence of the full free-energy
density of the cylindrical geometry~a! for F50.372 and
C50.363M and~b! F50.5 andC50.05M . In both cases, the full
curves, from top to bottom, correspond to the cases of a fixed
amount of salt and water, a fixed amount of water and salt chemical
potential, and fixed chemical potentials of both salt and water. The
dashed lines are the harmonic approximations to these curves.
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The PB equation for planar geometry is

f0952~a0e
f02e2f0!, ~A1!

where the scaled planar potentialf0 is zeroed at the mid-
plane@see Fig. 1~b!#. By symmetry, we need treat only one-
half of the geometry.~This subsystem is in fact the reference
state for the bending perturbation using the cell model, to be
precise.! The first integration of~A1! gives

~f08!254@e2f0211a0~e
f021!#. ~A2!

With the substitution sin2r5ef0, the next integration be-
comes possible and yields

x5u2u~0!, ~A3!

whereu[F(r,a0
1/2) is the incomplete elliptic integral of the

first kind of modulusa0
1/2 @42# andu(0) indicates its value at

the surface. It will also be useful to rewrite Eq.~A2! in terms
of Jacobi elliptic functions@42#

~f08!254 cs2udn2u. ~A4!

APPENDIX B: DEVELOPMENTS OF THE CURVATURE
EXPANSION AND MODULI FORMULAS

1. Development of the free-energyR dependence integral

Further simplification of Eq.~5! may be achieved as fol-
lows. Consider multiplication of Eq.~2! by r (dc/dr) and
then integration overV; thus

E
V
dVr

dc

dr
¹2c5

4pq

« E
V
dVr

dc

dr
~n2

c ebqc2n1
c e2bqc!.

~B1!

Evaluation in the cylindrical case gives

E
V
dV~n2

c ebqc1n1
c e2bqc!

5Fpr 2LH ~n2
c ebqc1n1

c e2bqc!2b
«

8pS dc

dr D
2J G

R

R1d

~B2!

and in the case of the spherical geometry

E
V
dV~n2

c ebqc1n1
c e2bqc!

52
1

3
bEel1F43pr 3H ~n2

c ebqc1n1
c e2bqc!

2b
«

8pS dc

dr D
2J G

R

R1d

. ~B3!

This then allows elimination of this term, i.e., the total num-
ber of ionsN, from the right-hand side of Eq.~5!, yielding in
the case of the cylinder~of lengthL)

S ]g

]~1/R! D
Atot

5
1

2pL H 2Eel1F2pr 2L
«

8pS dc

dr D 2

1b21pR2L~n2
c ebqc1n1

c e2bqc!G
R

R1dJ
~B4!

and in the case of the sphere

S ]g

]~1/R! D
Atot

5
1

3pRH 2Eel1F2pr 3
«

8pS dc

dr D 2

1b21pR3~n2
c ebqc1n1

c e2bqc!G
R

R1dJ .
~B5!

The final step may be achieved by multiplication of Eq.~2!
by dc/dr, followed by one-dimensional integration inr

E
R

R1d

dr
dc

dr
¹2c5

4pq

« E
R

R1d

dr
dc

dr
~n2

c ebqc2n1
c e2bqc!,

~B6!

so that

xE
R

R1d

dr
1

r S dc

dr D
2

5
4p

« F2
«

8pS dc

dr D
2

1b21~n2
c ebqc1n1

c e2bqc!G
R

R1d

~B7!

~wherex51 for the cylinder andx52 for the sphere!. This
is then used to eliminate all of the boundary terms from Eqs.
~B4! and ~B5!, thus yielding Eq.~6!.

2. Development of the integral form for k̄c

In order to obtain Eq.~25c! we proceed as follows. Equa-
tion ~24! gives initially for k̄c

k̄c52
«

4pkb2q2

3E
0

D0
dxx$x~f08!212f08~f18

~sph!22f18
~cyl!!%.

~B8!

Now, it is clear from~16b! that if one replacesf1, a1, and
g1 by xf1, xa1, andxg1, thenx cancels from the defining
differential equation forf1. Similarly, the boundary condi-
tionsf1(D0)50 andf j8(0)50 remain unaltered by such a
change. Now, we discuss the constraints. In the case consid-
ered in Sec. II C 1 of constant salt and water chemical po-
tentials, there isab initio no problem asa1 andn1 are zero
then. In the constantms andV case, a combination of Eqs.
~17b! and ~21! to eliminateD1 gives
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f18~D0!5
x

2
D0
2f09~D0!, ~B9!

which is again insensitive to the above replacements. Finally,
in the third case of fixedV andN, this last equation also
applies, along with Eq.~23!, which is also patently insensi-

tive to the above reassignment. Hence the differential equa-
tion, all boundary conditions, and constraints considered be-
ing insensitive to this transformation mean that
f1
(sph)[2f1

(cyl) . This gives Eq.~25c!. We note that Bedeaux
and co-workers@25# have made related observations regard-
ing the independence ofk̄c on perturbations of the planar
state.
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