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Bending of ionic surfactant monolayers

J. Daicic}” A. Fogden? I. Carlsson? H. Wennerstio,2 and B. Jaissor?
!Department of Environmental Science, Swiss Federal Institute of Technology, Grabenstrasse 3, CH-8952 Schlieren, Switzerland
2Physical Chemistry 1, Center for Chemistry and Chemical Engineering, University of Lund, P.O. Box 124, Lund S-22100, Sweden
(Received 26 April 1996

The electrostatic contribution to the bending moduli and spontaneous curvature of monolayers formed by
ionic surfactants in solution is calculated for all salt concentrations, ranging from no addécosalterions
only) to excess salt. This is accomplished using a perturbative expansion in curvature of the free energy of the
Poisson-Boltzmann cell model, which is shown to give precisely the same results for the moduli as would an
alternative calculation employing moments of the transverse pressure profile of the electric double layer. With
this treatment, it is possible to quantify the dependence of the moduli and spontaneous curvature on surfactant
concentration aloné.e., with fixed average salt concentratipa point of central importance to the validity of
the flexible surface model in the description of ionic surfactant systems. A manifestation of the counterion
condensation phenomenon is also observed, as the monolayer rigidity saturates and becomes independent of
the surface area per ionic headgrol®1063-651X96)03810-X]

PACS numbe(s): 68.10.Et, 82.65.Dp, 62.20.Dc

I. INTRODUCTION derstanding of these systems is then confounded by a highly
complicated dependence of its phenomenological parameters
The curvature energy concept, introduced by Helffith  on other, more fundamental, quantities.
has allowed a significantly deepened understanding of the To consider only the electrostatics shows a bias that may
thermodynamics of surfactant systems. Most germane to itse defended in a number of ways of varying justifiability:
success in capturing the phenomenology of these complethat the theoretical description of the electrostatics of colloi-
fluids is that it relies on a few parameters that are intuitivelydal systems igarguably more highly developed than other
appealing, such as the rigidity of membranes formed by thaspects, that it is not difficult to prepare systems where elec-
self-assembled amphiphiles. This framework has been aprostatic effects may be significant or dominatiftfgr ex-
plied to a large class of systems, ranging from “simple” ample, in regimes of low or intermediate added salt concen-
binary systems composed of nonionic surfactant and a singleation), and perhaps most importantly, that the present
solvent, to multicomponent solutions of ionic surfactant, co-understanding is that the main effect of adjusting the salt
surfactantsuch as alcohg| added salt, and two solvents. To concentration in an ionic system is to change the spontane-
further this understanding it is always useful, where possiblepus curvature and bending moduli of the surfactant mem-
to describe phenomenological parameters in terms of morerane through a variation in the electrostatic screening
fundamental quantities and variables that are experimentalliength. It is the last of these that provides our strongest mo-
accessible. The current paper is in the tradition of studies thaivation, as a phenomenological model requires one other
have sought to characterize the coupling constants of thignportant (and relategl element to make it truly useful: a
flexible surface model in terms of molecular quantities. connection to experimental tuning parameters. In ionic sys-
Herein, we constrain ourselves to a partial description otems, adjustment of the concentration of added salt can in-
systems containing ionic surfactants, partial in the sense thaluce phase transitions and is thus often employed as an ex-
it is only the electrostatic contribution to the bending moduliperimental control parameter, with the link to the flexible
that is considered. It is beyond question that intraparticlesurface model alluded to above. One of the main results of
effects (such as the conformational entropy of the am-this paper is that purely electrostatic effects of at least equal
phiphileg and interparticle interactions of a nonelectrostaticsignificance may also be induced by simple adjustment of the
origin (such as headgroup steric repulgionay play a sig- surfactant concentration, without changing the average salt
nificant or seemingly dominating role in these systemsconcentration. This suggests that a decoupling of the surfac-
While several worthwhile attemptsvhich we shall summa- tant concentration and salt concentration into conjugate ex-
rize shortly have been made to incorporate a number ofperimental variables is not viable for at least some systems.
these effects into a comprehensive understanding of the m@&ince the coupling constants themselves are dependent on
lecular origin of the bending moduli, the problem is that thethe surfactant concentration, scaling laws based primarily on
simplicity that the flexible surface model brought to our un-surfactant-concentration-induced effe¢suich as the steric
repulsion law of Helfrich[2] for lamellar phasesare thus
problematic to invoke for such systems. Not surprisingly,
“Present address: Department of Applied Mathematics, Researdtowever, in regimes of high concentrations of added salt
School of Physical Sciences and Engineering, Australian Nationalvhere the electrostatics is highly screened, the conventional
University, Canberra, 0200, Australia. picture is, to all intents, valid. Hence our stated aim will be
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54 BENDING OF IONIC SURFACTANT MONOLAYERS 3985
to give a more complete description of the electrostatics, sof the moduli is the free energy expanded to quadratic order
as to indicate how the flexible surface model may better bén the curvatures, asymptotic analytic solutions given inde-
applied to ionic systems. pendently(and using complementary methadsy Mitchell
In the flexible surface model, the curvature energy perand Ninhan(6] and Lekkerkerkef7] allowed these authors
unit area of the surfacg. expanded to harmonic order is to evaluate the electrostatic contribution to the moduli using
given by the full nonlinear theory. Lekkerkerkd®8] later rederived
, — these results by evaluating moments of the electrostatic pres-
9c=2Kc(H—Ho)"+keK, D sure profile of the electric double layer. Fogden, Mitchell,
hereH is th ¢ is th N and Ninham [9] cons_idered a sinusoidally undulating
wherer 1S ne mean curva uré], is the spon aneous mean charged plane and derived the free energy for the full non-
curvatureK is the Gaussian curvature, the bending modulugineay theory to quadratic order in the amplitude, also ex-
is k¢, and the saddle-splay constantkis. We emphasize {racting k, in the harmonic limit. Later, Winterhalter and
that in this paper we will be interested in all three bendingye|frich [10] and Fogden and Ninhafi1] reexamined the
“constants” that appear herek., k., and the product predictions of the above calculations, with a particular em-
kcHo, which occurs in the coefficient of the term linear in phasis on the coupling of the monolayers constituting a bi-
H above[3]. The discussion is restricted to one of surfactantiayer. What we wish to point out here, and our initial moti-
monolayergalthough the results could be generalized to bi-vation for the current work, is that all of these calculations
layers without difficulty and to the curvature energy ex- are in the limit ofexcess saltin other words, the surfactant
panded only to harmonic ordéalthough a calculation of the concentration is zero and the electrostatic contribution to the
electrostatic contribution to the moduli associated with anmoduli is calculated for a single, isolated sheet. This would
harmonic terms could be made, with difficultyVe shall not  be a valid approximation to a real system in certain regimes
consider here the surface tension, which in surfactant sysf salt concentration(high) and surfactant concentration
tems is commonly understood to be vanishingly small. If the(low). However, without allowing for the effect of nonzero
calculation is made for a given, fixed geomefwithout  surfactant concentration, it is unclear how good an approxi-
thermal fluctuations of the surfacthen the curvature energy mation this is, how the moduli behave as the salt concentra-
and free energy are one and the same. To make a connectigion is reduced towards the low-salt limit, and how the
to the electrostatic free energy of an ionic system, the usuahoduli change as a function of surfactant concentration
method(which we shall follow is to begin by calculating the alone.
electrostatic potentiay using the Poisson-Boltzmann equa-  An initial study to attempt to cover the broad regime in-
tion for a 1:1 electrolyte corporating both the weak and strong electrolyte limits is due
to Pincuset al. [12], who investigated the undulation spec-
trum of weakly fluctuating membranes in four regions: the
linearized regime, the excess salt nonlinear regime, and in
the no-salt limit for both high and low surface charge density
whereq is the protonic charge8=1/kgT, e =4meqe, isthe  (which they labeled the “Gouy-Chapman” and “ideal gas”
dielectric constant of water, anmtf. are the respective num- regions, respectively A more detailed investigation of the
ber densities of the ionic species of chargewhere=0.  no-salt (counterions only limit was given by Higgs and
(For definiteness, we shall assume the surfactants to be adoanny{13], employing the cylindrical and undulating sheet
ionic.) In principle, we require the geometries of the plane,geometries, and a further exposition and development of the
cylinder, and sphere to derive the mod(dithough, as we combined results of Ref§12,13 was given by Hardeet al.
will show that, only one of the cylinder and sphere geom-[14]. The scaling ok, was shown to be determined by the
etries is ultimately neededwe should note at this point that relative sizes of the Debye screening length, the Gouy-
there are many well-known deficiencies in the descriptionChapman lengtliboth to be defined in Sec.)]land the in-
offered by Eq(2), such as the neglect of ion-ion correlations termembrane spacing of the lamellar system. The important
and finite ion size, but these we shall ignore. conclusion reached by these authors was that with excess
Winterhalter and HelfricH4] calculated the electrostatic added salt, the long-range steric repulsion of Helfrieh
contribution to the moduli, linearizing the Poisson- between the lamellae well exceeds the electrostatic contribu-
Boltzmann (PB) equation(2) and thus working within the tion to the free energy, whereas in the low-salt limit the
Debye-Hickel approximation. As the solution to the linear- unscreened electrostatic repulsion dominates. Recently, two
ized PB equation for all above-mentioned geometries is welbf us, with Mitchell and Ninhanj15], have given a further
known and relatively uncomplicated, quite simple expresdinvestigation of the no-salt limit using the cylinder and un-
sions were obtained in this limit, requiring low surface po-dulating plane geometries. Therein, we develop an expres-
tential (less than around 25 m\and thus low surface charge sion for the bending modulus valid over all regimes of sur-
density. Another, later, treatment of the linearized problemface charge density. We also confirm and generalize the
for surfaces of arbitrary geometry and topology, is due tooriginal suggestion of Hardeet al.[14] that a calculation of
Duplantieret al.[5]. Further progress for systems with addedk. from different geometries can give the same functional
salt hinged on the development of solutions of the nonlineaform. This is important, as it indicates that the local nature of
PB equation for cylindrical and spherical geometries or forEg. (1) is maintained even in the limit of unscreened electro-
sinusoidal corrugations of the planar geometry. As full anastatic interactions. To again place the current work in a
lytic solutions for the spherical and cylindrical geometriesproper context, Refs[12—14 actually dealt with the two
are still unknown and all that is required for the calculationextremes of excess salt and no salt, in the limits of low and
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high surface charge density. The aim of the current paper is
to allow for intermediate-salt concentrations and finite sur-
factant concentrations, at any surface charge density. This is
more appropriate to many systems, where single phases
(such as the lamellar phgsmay span a very broad range of
salt and surfactant concentrations.

We now briefly summarize some other related literature.
As alluded to above, a number of important works have at-
tempted to incorporate nonelectrostatic effects into the cal-
culation of the bending moduli, notably by Szleifer and co-
workers [16—18 and by Ennis[19]. Such effects include
those of steric head-head interactions, chain packing, and
chain-oil interactions. Barneveldt al. [20] have presented
an alternative approach to the calculation of bending moduli,
employing a self-consistent field lattice model, allowing for
the finite size of the ions. A simpler, more recent approach
by Cantor{21] relies on the high-salt limit to employ a quasi-
two-dimensional mean-field approximation, where only the 1)
interaction of the surface and the nearest “layer” of ions is ®
dealt with, in the context of the stability of bicontinuous o
microemulsions. On the other hand, Odif2] and de Vries -
[23,24] have investigated the issue of electrostatic forces in N ©
lamellar phases. Interestingly, the most recent of thadg ®
presents a calculation of the free energy of passage formation
in lamellar phases, where de Vries concludes that anhar- ® ®
monic terms in the curvature free energy play an important o
role. There is also a significant body of work by Bedeaux
and co-workerd25] dealing with the statistical mechanics
and bending constants of curved surfaces. Recently, Andel- O
man[26] has given a review of the literature on electrostatic ®
properties of membranes. On the challenging experimental ® ®
problem of measuring the electrostatic contribution to the
bending moduli, we shall reserve a discussion of this litera- ) O do 2do
ture to a later section.

The paper is organized as follows. In Sec. Il we describe F|G. 1. (a) Cross section of the cylindrical and spherical cell
how the electrostatic free energy of the cell model dependgodels.(b) Planar reference geometry. Note that in fact it is the
on curvature and make a perturbation in the reciprocal agsubsystem front=0 to d, that forms the reference for the per-
gregate radius. In Sec. Il we explicitly solve the PB cell turbed state.
model up to first order in curvature for cylinders and spheres
and present the results for the bending moduli. These argqqyced. This is done by constraining the ions in some
compared with existing results in the excess- and no-salt ”m\7vay, naturally introducing the new length scélee width of
its. We also show calculations for a specific system, indicaty o \vater layer In the case of no added salt, the exact so-
ing the dependence of the moduli on the salt and surfactafision of the PB equation is known for the concentric cylin-
con_centra_tlons and surface .charge density. We conclude withyi. geometry[31], allowing the calculation ok, (and
a discussion of our results in Sec. IV. k.Ho, if desired. However, there is no such exact solution to

Fin_ally, we note _that a c_:ompanion paper by two of 28] b pp equation extant for the cylindrical or spherical geom-
contains a calculation df; in the general case of all salt and 4trias in the case of added salt.

surfactant concentrations, employing the rippled-plane ge- The usual method of introducing nonzero aggregate con-

ometry. We shall make a connection to this work hereinggniration(or particle concentration, in the case of macroion
whenever appropriate. systems for charged systems with ionic atmospheres is the
Poisson-Boltzmann cell modekhich has a long history in
II. ELECTROSTATIC FREE ENERGY colloid sciencd32,33. In this model, the system is divided
OF THE CELL MODEL into electroneutral cells, each with a macroion or aggregate
surrounded by an aqueous region containing the ions. The
cell size is directly determined by the macroion or aggregate
As stated in the Introduction, some previous calculationsoncentration. A schematic representation of the cross sec-
of electrostatic contributions to the elastic moduli have dealtion of such a cell, equally applicable to the cylindrical and
with the excess-salt case, where the bending free energy ofspherical geometries, is given in Figial Because of elec-
single isolated surface may be considered. In order to dedtoneutrality, the electric field vanishes at the cell boundary
with the situation of a nonzero surfactant concentration at 4i.e., d¢y/dr=0) at a distancdR+d from the center of the
general salt concentration, an additional length scale must beggregate, wherd® is the aggregate radius. The surface
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A. Curvature dependence of the free energy
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charge density is- o (wherea>0). It will be convenientto  the potential. We emphasize that keepifg; fixed while
conceptualize the interior as being filled by oil in the contextchangingR means that the length of the cylinddrsand the
of the current problem; we will assume no electrostatic counumberof spheres in the respective systems will change in
pling across the interior. All charged groups on the surfactangompensatiofi30]. We may for convenience chooge=0 at

will be idealized to lie on the surface &; however, the =R+ d, a|th0ugh' by gauge invariance, we could take it to
surfactant concentration will be introduced through a finitehe any constant value there, say, so that
hydrocarbon tail length off, extending into the interior. We

also assume that there are no free surfactant monomers in the n% =n.e*Aav, @)
aqueous solution. The planar geometry at finite concentration
is the reference state and is shown as F{g).IThis system It is useful now to switch to dimensionless quantities and

has been studied extensivel28], and a treatment with to also define quantities associated with the reference planar

boundary conditions appropriate to the current work hastate. The dimensionless potentialds= 8qy, andd, and

been given by Jusson and Wennerstro[29]. For reference, nS , will be the appropriate planar quantities. It will be also

we recount this briefly in Appendix A. useful to defineag=n® /n< , and to introduce the length
We seek now a curvature expansion for the electrostatig3s) ' ’

cal and spherical cell models, i.e., an asymptotic series in . € 172

1/R [30]. At least in principle, we shall need to consider both Ap=k "= ' ®

all of kcHo, ke, andk. . The free energy is given by the sum which we then use to scale other lengths as

of the electrostatic internal energy and entropy contributions

free energy per unit area of surfage- G/A of the cylindri-
2 nC 2
the cylindrical and spherical geometries in order to calculate ™ 084

x=«k(r—R), D=«d, b=1l/(«R). 9
G=Eq—TS 3
In scaled form, the PB equation then becomes
where
b n® n<
& "y r— db__ T ¢
EngfvdVlV(Mz. (4) P XTrpx? 2( nt S nt,C ) (19

In order to calculate the curvature dependence at fixed ~Wherex=0 corresponds to the planar case and the derivative
total monolayer surface area in the systerg,Ave make the ~ ©Of the scaled potentiab(x) with respect toc is indicated by
following connection[34] for both the cylindrical and the prime. The boundary conditions are then

spherical geometries:

#(D)=0, (118
_99 —_R? &_V, 9 ,
J(1R) IR AV ¢'(D)=0, (11b
A[ol Atot Atot

A
R ! "(0)=2—, 110
- Ew;fvdv $'(0)=2,— (110

where in the last equation
x[nce/’q'/’+n°+eﬁq*”]f“d], (5)
€

, . Nec=5 5o (12
whereA is the surface area of a single aggregate ¥énend ThAo

V are the volumes of the aggregate interior and aqueous

region, respectively. In Appendix B1 we show how theis the Gouy-Chapman length. Finally, it will be convenient to

above may be manipulated into the simpler form give in scaled form Eq(6), which is, for the cylindrical case,

R [r\X]/dy\?
TR/ J\ar) ( ﬂg) s de (Z—I—bx
©) JIR)), ~ 8wBP)o M\ T+ bx

where y=1 for the cylindrical geometry ang=2 for the
spherical geometry. This last equation is central to our treatand in the spherical case
ment of the problem at hand. No assumption has been made

in its development other than the overall electroneutrality of Jg £ D
the cell. Although this equation is st_rlctly e_'qw_valent to Eq. m == Wfo dx
(5), the cancellations that occur in its derivation allow the Atot

negativity of the derivative to be evident and, as will be
shown later, permit determination of the curvature energy up
to quadratic order using only the first-order perturbations for

ag ) _ X inR“‘d
+
AR, L1+ xam )R (1% (13

3 b?x%+4(1+bx)

X
X 1+bx

$")% (14
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B. Perturbation scheme for the electrostatic potential C. Constraints

The planar stateb(=0) is taken as the reference, and we In order to close the problem, two additional constraints
make the perturbation of the free energy in powerdofip  must be imposed, which may be chosen in any physically
to harmonic order. It is sufficient for our purposes that thereasonable fashion. Here, we consider three possibilities of
expansion be asymptotic, as the curvature expansion is itselfterest.
only sensible in the asymptotic limit— 0. Over the past ten
years or so, there have been several works dealing with the 1. Fixed water and salt chemical potentials

perturbative solutions of the cylindrical cell model, develop-  \arcus[39] originally showed the relationship between
ing bounds on exact solutions of the PB equafi8fl], for  the phoundary values of the ion densities and electrostatic
the counterions-only cad@7], or perturbations around this potential, and the chemical potentials of salt) and water

squt@on[38]. The foIIowing_differs from these in the sense (w.,)- These ardignoring standard chemical potential tedms
that it makes no assumption regarding the surface charge

density and provides exact solutions to the given order in Bus=2Inn, (18)

b. We simultaneously deal with the spherical geometry. We

also note that the utility of the following treatment of the and

potential and free energy of the cell model is not restricted to

the current problem of monolayer bending elasticity, but Biw= —2vyne(coshp.—1), (19

could be applied to other systems where the solution of the ) o

PB equation in cylindrical or spherical geometry is required Wheré vy, is the molecular volume of water. Thus, fixing
As stated, we impose that the total areg, of surface is  POth us andpu,, on bending the surface requires timatand

held fixed on bending and for the present, we also impose &c '€main constant, which simply means that=0 and

fixed surface charge density, returning later to the issue »j=0 forj=12,.... So, forthis case, it is only the chemi-

of alternative boundary conditions at the surfasech as Cal potential of amphiphilg., that changes with curvature.

constant surface potential or mixed conditibrihe bound-

ary densities. are also, in general, allowed to deviate from

their planar values. As it happens, it is sufficient to expand Alternatively, we may choose to relax the constraint on

the potential and boundary quantities up to linear order in théhe osmotic pressure and only kegp fixed, so thatv;=0.

2. Fixed salt chemical potential and amount of water

curvatures to calculate the moduli. We then have This then allows the freedom to satisfy another requirement,
such as conservation of the total amount of water in the cell,
¢=dot Pib+- -+, (158 j.e., the volumeV, on bending the surface. With,, also
fixed, it is straightforward to show that we require
X Xx—1 5
kV/IA=D| 1+ ZDb+——D*b~|, (20
nS=n% g+nl b+..., (150 2 x+1

. . . ¢ ¢ which in terms of the perturbation means
and for convenience we will writea;=nZ ;/n7 , and

¥i=n$ ;/n% 4. Thus the PB equation, as given (h0), be-

. X
comes to zeroth and first orders D,=- EDS' (21
" — bo_a= b
bo=2(aoe0—e ), (169 3. Fixed amounts of water and ions
and Relaxing totally the constraint on all chemical potentials
allows us to fix both the total number of water molecules and
"—2(apeo+e %) = — xybo+ 2(aePo— y e %), total number of iondN in a cell, where
(16b
_ sz dV(n®e?+nSe ?). (22
It is also useful to expand the, and ¢.= Bq. that appear %

in (7) in the fashion of Eq(15), and for later convenience to
assignzy,= ¢ ; andv;=n.;/2n. o. The boundary conditions Hence, in this case the amounts of all of the components and

of Eq. (11) imply their concentrations are preserved on bending. Using Egs.
(16) and(17), it is possible to show that Eq22) is equiva-
$o(Dg)=0, ¢4(Dg)=0, (179  lent to stipulating that
Do
#$1(Do)=0, ¢1(Do)=—D1¢o(Dg),  (17b fo dX xx(¢)*—2¢o¢p1]=4(a1+ y)Do. (23
and

This is the most challenging case, of the three that we con-
sider, to solve. We note also that an interesting fourth possi-
¢6(0):2)\—D, $(0)=0 (j=12,..). (179 bility is the case of fixeqe,, andN; however, we leave that
Aec ! for a future study.



54 BENDING OF IONIC SURFACTANT MONOLAYERS

I1l. BENDING MODULI

A. Connection to the curvature free energy and moduli

We now employ the perturbation scheme outlined above

to determine the bending moduli. Expanding Es3) and

(14) to first order gives

d9 g
(a(l/R))A ~ T 8np% zf dx{2xx(pg)?

+X[Axpodi+(x—2)X(dp)*Ib+ - - - }.
(29

Comparing with the curvature free energy of Et). yields

3989
1 (Do JI1(sPh
kc——FL dxx—a(Z/R) A (27b
and
_ 1 (Do
c:—;gj dxxI1,, (270
0

whereTl, and ITPY are the planar and spherical pressure
profiles, respectively. Now, with EqA2), we have that

2

4 ﬂz ( ¢O) 2 (28)

[Mo(x) =

It is then by inspection that we see that E@/a9 and (270

o Do
= 2
keHo 877,82qu'0 dxx(bo)”, (253 are identical to(259 and (250, respectively, for all of the
constraints that we consider. The proof that the isomorphism
o , holds also in the case df. is more involved. The explicit
Wj dxx{4¢ody Y —x(¢o)°], prediction of Eq.(27D) is
(25b
= é #01P0
and kC 87TKﬂ q f dXX(¢O¢l+2{ [()lle 0+ Vle O]
_ 2oz + (age®o—e” %) ¢,}), (29)
| woRepn @5

in which all symbols with subscript 1 refer to the spherical
case. This can be expressed most simply, for the purposes of

i r(ey) indi i i
where in(25b), ¢, indicates the appropriate quantity for the later calculations, in terms of the variablesand v, as

the cylindrical case. In fact, the derivation of the last formula

is interesting, and Appendix B 2 is devoted to it. There we

also show thagp{SPM=24{" (for all of the cases considered k.= f dx{pod1+X(ml ¢512°0— vi[ pp12)}

in Sec. Il Q. Hence it becomes clear that we requieher 87TK'3 q*

the cylindrical or spherical geometry in order to solve the (30

current problem, but not both, a point not at all obvious at .

the outset. Note also that, generalkgH, andk, are inde- However, Eq.(29) could also be reexpressed using the fact
that

pendent of the perturbation on the planar squt|on and hence

aretotally insensitive to the constraints imposed on bendin

the surfgce. P ’ ~[ase?o+vie” %0100+ (age’o—e %) ¢y

B. Comparison to moments of the transverse pressure profile

1 ! ’ DO \2
=5 bodi~ f dx(p)?, (3
X
An alternative method for calculation of the bending

moduli is the evaluation of moments of the transverse presagain with all subscripts 1 in Eq&30) and(31) related to the
sure profile. It was initially introduced by Kirkwood and sphere. From the fact that (sph)_ 2¢(cyl) Eq. (25b) follows
Buff [40] in the context of the surface tension of the liquid- i, 5 straightforward manner. So the predictions for the bend-
vapor interface, and much later Helfrigh1] made the con-  jn4 moduli of moments of the transverse pressure profile and

nection to the bending moduli. This was later extended by, ¢ryature expansion for the electrostatic free energy will be
Szleiferet al. [18]. Winterhalter and Helfrichh4,10] and Le- identical for all cases that we consider.

kkerkerker[8] have also employed this method in the calcu-
lation of ionic surfactant bending moduli.

The transverse pressure profile of the double layer is
given by

C. General solution for ¢,

In order to fully expres%. in terms of planar quantities,

o ic2 1 we need to find a general solution fey in terr]ms of¢?. As
(X)= =——5—5(¢')2— —[n°e?+nce 42, (26) detailed above and in Appendix B 2, wightSP= 2_¢(1°y.) we

8mB°q B may choose to evaluatie, using either the cylindrical or
spherical geometry: we choose the latter and substitute into
Eq. (30). The other two moduli rely only on the well-known
planar solution summarized in Appendix A. We describe
now the analytic solution fog, in the spherical cell model.

Equations(16@ and (16b) may be combined to give

The bending moduli are then

1 (Db
kCHOZZZJO dXXl_Io, (27@
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d[ ,,d , , d . I=T1+ T+ 11Ks, (39)
0 (d’o)zd_x((f’l/d’o)}:_2(¢o)2+2d_x(ale¢°+71e %) e
ith
39 Wi
Applying appropriate boundary conditions fro(@7g and T =— 2 (D22— W D)2 (40)
(17b), two integrations then give the general solution for 27 WoReo
¢, in terms of the planar solutiothy:
and
hr=—205 [ sy et y
l: o X X 4 — !
e T Ks=—[45(0)] " W[D%/Z—W”]wo(ow(mj,
’ Do \—2r 4m1Do ’ ’ (41)
+ 110 |  AX(dg) T ol °—v1(Do—X) o+ Cehy,
x where
(33) _ ! "
V= o(0) = Do(0). (42)

where we have newly defined=¢1(Dg)/ $35(Dy) and
&(x), where Y 1(Pa)/$o(Do) So, for the case of fixegls andV, ;=0 and the modulus

is given by Eq.(36) with Z=7;+7,. We note thatZ, is
Do 2 strictly non-negative, as its denominator is negative. This
&x)= L dx(¢g)*. (34 indicates that the constraint of fixing leads to an increase
in k. and thus to anncrease in the curvature free energy

We note thaC is unconstrained by any boundary condition This important point indicates that indeed the fixed and
atx=D, in the case of constanpt andu,, (Sec. Il C 1, but ~ Mw Case has a natural meaning in the definition of a bending
that we must sef= D} for the other two cases. We also bear modulus, as the imposition of, for example, a volume-fixing

in mind the other boundary conditions and constraints previ¢onstraint gives a higher free energy. Therefore, in an uncon-
ously laid out in Sec. Il above. strained real system, thermodynamics dictates that maintain-

ing constanius andw,, on bending will be preferential to the
combination of constants andV.
For the fixedN andV case, we must eliminate; using

It is useful now to provide formal expressions fir in Eq. (23). This ultimately leads to
terms of planar quantities, valid for all cases discussed in

Sec. II C. This is given by substitution of E¢33) into the I=T,+I,+1I;, (43
expression30) and also usingp;(0)=0. The resulting ex- o ]
pressions are naturally phrased in terms of the integrals ~ With the extra contributiorY; now given by

D. Formal expression for the bending modulus

D d y , 2
Wm:f de(¢6)‘1d—[(¢g)‘15”(x)]. (35) 21 3707 [D6/2= W]+ ¢(0) £(0)
° X Ty= 7 (49
For convenience, we write EG30) as wo 2
- & where
k=g quzI- (36)
_ . _ Z=[¢3(0)]*{£(0) +[¢5(0)]™ [ ho(0)1°+8(ap+1)Do}.
The integralZ is then broken up into the sum of three parts (45)
I=T1+ mI+v1Js, (37)  We also note thaf;=0, so that the constraint of fixed com-
position gives the large&i. and thus the highest-energy pen-
where alty for bending the surface. So, to summarize,
I — 22 (389 ko= (e/8mkB°0%) (I, +I,+ I3), with the appropriate combi-
1 ' nation of theZ; determined by the imposed constraints. Spe-
_ g 215 1A(1) cifically, Z;=0 for the fixedus and u,, and fixed us and
J2=#3(Do)(Dg/2= W), 380y cases, and alsB,=0 in the former case.
and We thus now have all df.H, k., andk. in terms of the
known planar solution of the PB equation and the problem is
Tz=—d(0)[ p(0)]71E(0). (389  formally solved. If we wished to give these solutions in

terms of known functions, it would be a matter of substitut-
We must eliminate the two variableg, and v, from Z in  ing the expressions fax and ¢, given as Egs(A3) and
terms of the applied constraints. In the case of consi@nt (A4), respectively, into the above formulas, and then per-
and u,,, with »;=v,=0, we have thal=171;. In the other forming the appropriate integrations. However, this leads to
two cases, we use the constraiist D2 to eliminates;. This  unwieldy expressions that are of marginal value. It is more
then gives useful, in our view, to proceed from this point on by numeri-
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08 E. Evaluation of the moduli
0.7 The formulas fork.Hqy and k; given by Egs.(258 and
0.6 (250, and the expressions fég, given in Sec. Il D are, via
~ o5 substitution of Eq(A3), functions of the three state variables
g 0.4 Ap, dg, anday. We eliminate these in terms of the planar-
& 03 =0 state characteristics relevant to our purpoaeg:, defined in
: Eqg. (12) and given by combining Eq$A4) and (170, the
volume fraction of surfactanb=1/(l +d;), and the average
concentration of sal€ in molar (M), which is given by

D =05
0
02
__ 04
5 0.6 B0
X
0.8
I
A
12
14
0.2 04 0.6 0.8 1
(©) c

FIG. 2. Bending moduli as a function of average salt concentra-
tion C, for fixed values of surfactant volume fraction
®=0, 0.1, 0.2, 0.3, 0.4, and 0.6a) k.. (b) kcHy. (C) k.

cal evaluation of, or alternatively by using analytical ap-
proximations to, the expressions that we have developed.
We also point out that we have checked our expressions
in the limits of excess saltay=1) and counterions only
(ap=0) and they do in fact recover the correct limiting
forms, which may be found in Ref§6—15. We note here
though that botlZ, andZ; above vanish in the excess salt
limit (as they must In fact, W(®)~exp(constb) and
WH~1/® in the ®—0 limit (where ® is the surfactant
volume fraction, allowing one to explicitly deduce the as-
ymptotic behavior ofZ, andZ; in the excess-salt limit, if
desired. In the zero-salt limif; vanishes and the two cases
that fix V become degenerate, as they should for counterions
only. Finally, we note that we have also obtained an expres-
sion fork, in the case of constant chemical potentials of salt

ke (kBT)

E

o

keHo (ks T/A)

(b)

l?c (kBT)

(©

n®, (D
Cc=103 'Of *dxeo,
0

NaDo

(46)

where N, is the Avogadro number. We must also choose
numerical values for the system parameters. We tak@.5
A, the area per charged surfactant headgroup as §7aAd
T=298 K. These numbers are relevant to an A@ddium
bis(2-ethylhexy) sulfosuccinatg salt-water system[43].

1.5

0.5

0.08

0.07
0.06
0.05
0.04
0.03
0.02

0.01

C=1.0M

C=1.0M

-0.5

and water using the rippled-plane geometry, the calculational FIG. 3. Bending moduli as a function of surfactant volume frac-
details of which are given in Ref27]. The result agrees tion @, for fixed values of average salt concentration@ 0.0025,
precisely with that which we obtain in the current paper for0.005, 0.01, 0.02, 0.04, 0.06, 0.1, 0.2, 0.3, 0.5, ant1(@) k. . (b)
this case. kcHo. (0) k.
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FIG. 4. Comparison of the bending modulus under different (b) )

constraints for@) ®=0.2 and(b) C=0.1IM. On both graphs, the
lower curve corresponds to fixeds and w,,, the middle curve to

i . FIG. 5. Behavior of the “stability parameter” +k7, iven
fixed ugs andV, and the upper curve to fixed andN. yp KRtke, g

as a function of(a) the average salt concentratigfor fixed
However, we emphasize that our aim here is not to maké&=0. 0.1, 0.2, 0.3, 0.4, 0.5), an(b) the surfactant concentra-
specific predictions regarding a given system, but rather tgon (for fixed C=0, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.06, 0.1, 0.2,
indicate the general characteristic behavior of the moduli9-3: 0-5, and 18).

and thus these values should be regarded as nominal. g jntegrals. This is particularly so near the limit of excess

The numerical evaluation was done using a program W”t'salt, where many phases of interest are commonly found. It

ten for the MATHEMATICA package, which performs the . yhen suffice to consider the existing excess-salt formulas

above change of variables and evaluates the integral EXPre%—_9], embellished by their first-order correctiondn Such
sions for the moduli in a straightforward manner. First, 'nexpaﬁsions may be found from our integral expressions

flgt.' 2, é\’e Sthf(.)w QOW ghetm(;dulll depefnd (t)'n thg Sf‘rllt CONCeN3Khove. Without giving any details of their development, we
ration L, at Tixed surfactant volume fraction, In the range g, pinit these below. In order to harmonize these with the

®=0 (the excgss-salt ca);tn (D:.O'S' In Fig. 3 we show existing excess-salt formulas, we now take the following
how the moduli change wittb at fixed average salt concen- definitions: =[878q2%(10°N,C)/s Y2 gives the “usual”

tration, in the ranges=0 (counterions only to C=1.0M. efinition of the inverse Debye length in the excess salt limit
Note the dramatic effect as the salt concentration is reduced; 4 s=2/(k\go) is the dimensionless variable used by
we s_haII _shortly return to this point in our forthcoming dis- Mitchell and l%licnham[6] andw= (1+s%4)"2 that by Lek-
cussion in Sec. I\./' We note he_re that we have use_«d thEerkerker[?,S] (which he denotes ag) in their derivations
definition ofk. for fixed us and w,, in Figs. 2 and 3. In Fig. f the excess-salt formulas. We obtain

4, we make a comparison between the three alternative def? ’

nitions of the bending modulus, indicating that indeed the s

fixed us,u,, alternative will give the lowest mean curvature kcHo=m( 2In[(1+w)/2]

penalty. In Fig. 5 plots are given fork2+k. (with k. again

taken for the case of constant chemical potentials of salt and (sl2)* Nac
watep. This quantity is important, as it indicates whether the S w(si2Hw)  (1+ w22 T
electrostatics acts to stabilize K2+ k.>0) or destabilize

(2k.+k.<0) the monolayer at harmonic order in the curva-

tures. Clearly, our results indicate that either situation is a — £

possibility, depending on the regime of salt and surfactant ~ Kc=— m{f(W)JFS(W—S/Z— 1)
concentration: again, we return to this important point later,
in Sec. IV.

O+ ..

(47

Aac

1 1
X Ef(w)+wln[(1+w)/2])(— DA+ ...

F. Approximate formulas at low volume fraction

For practical applications, it may sometimes be preferable (48)

to use analytical approximations rather than evaluation of thevhere
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In[(1+w)/2] t IV. DISCUSSION
f(w)=D4(In[(1+w)/2])= dt=— (49 ] ] o
0 e—1 The introduction of nonzero surfactant concentration into

. . ] ] the calculation of the electrostatic contribution to the bend-
andD,(x) is a Debye functiorirelated to the dilogarithid  jng moduli has been seen to be significant, from the results
For k¢, we find that the fixedus,u,, and us,V cases nrasented above, in two ways. First, increasing the surfactant
reduce to the same Taylor expansion, as terms arising froif,ncentration reduces the dependence of the moduli on salt
1, above are subdominant when expanded for low volume,,centration: this is clear from Fig. 2. Second, at fixed-salt
fraction [i.e., the expansion contains terms .Of the formconcentratiorthe bending moduli change significantly with
exp(-constiP)]. For these two cases, we obtain surfactant concentratignas shown in Fig. 3. Furthermore,
. { (W—1)(W+2) the notion that it iskc;H, that is more sensitive to system

changes thark. or k; is seen to be true, if ever, only in

certain regimes: low-salt concentration with high surfactant

5 12 5 concentration and low surfactant concentration with high-salt

_ Siw—s2)PH(w—1)[w+2+2(2w+ 1)/w”] concentration; in all other regimes the two other moduli are
2\2w(1+w)3? as least as sensitive &gHo.

All of these results point towards a caveat in applying the
flexible surface model to ionic surfactant systems. First, the
surfactant concentration dependence of the moduli is prob-
lematic, as a considerable amount of knowledge regarding
In the case of fixedN andV, it happens thaf; does in fact these systems is based on scaling laws where the bending
have a Taylor expansion. Writing for this case Mmoduli are explicitly assumed to be independent of the sur-
k.=Kk.+ k.. wherek. is the right-hand side of50), we factant concentration. The undulation free energy of Helfrich

S e that ¢ ’ [2] for lamellar phases and the ideal scaling law of Porte

Ke= B2 | ww+ 1)

Age

X
I

(I>+--~]. (50

have that ) .
et al.[48] for sponge phases are prominent examples of this.
e (sl2)®  [Ngc To see the bending moduli ardkl coupled therefore calls for
5kc=ﬂ;ﬂzqz w2(1+w)2<l_ ®+---. (51  caution in the application of such laws. Second, it is often

argued(indeed, as by some of U49]) that the monolayer
spontaneous curvature plays a dominating role as a control-
G. Counterion condensation ling parameter in surfactant systems, by determining the sta-

We now investigate the effect of changing the surface_bi“ty of Fhe competi'ng' phases. We see hgre that apart from
charge density. This we do in relation to the phenomenon of? certain special limits, the other moduli are as least as
counterion condensatioand the associated concept of the Sensitive to changes in system parameters. This complicates
effective chargea theory attributed to Manninf#4] and the picture for ionic systems; for example, chang_es in mono-
well known in the polyelectrolyte literatufg3,37,38,4% It layer topology may be induced through changes in either salt
has also been discussed in regard to lamellar liquid crystal@r surfactant concentration, judging by our resultskpy as
previously by Jasson and Wennerstro[29] and also by this couples to the Gaussian curvatie
Alexanderet al. [46] in the context of charged colloidal flu- ~ We have also seen, in Fig. 4, that the choice of constraints
ids. Recently, Gisleet al.[47] have made measurements on on bending the surface will significantly affect the value of
latex suspensions that confirm the concept for these systeni§€e bending modulus. As we have argued throughout, it ap-
The basic notion is that the nonlinear PB equation obtains, d1€ars as though curvature changes with the salt and water
large distances from the surfag®ear the cell boundajyan  chemical potentials fixed are least penalized. Note the inter-
asymptotic solution that is that of the linearized PB equation€sting behavior, in Fig. 4, of the upper two curves at the
with an effective surface charge densifyat takes into ac- extremes of both vanishing and excess salt.
count the fact that near the surface there is a high density of Another point of interest is as to whether the system is
accumulated counterions. As the surface charge density Riabilized or destabilized, at harmonic order in the curva-
increased, the effective charge saturates and becomes indetes, by electrostatic effects. Referring to our results pre-
pendent of the “bare” charge on the surface: this is thesented in Fig. 5, we deduce that electrostatics acts to stabilize
signature of counterion condensation. the system at high salt and surfactant concentrations, but at

Here we investigate whether the surfactant bendindow concentrations can play a destabilizing role. In the latter
moduli also display such a saturation phenomenon. If so¢ase, higher-ordefanharmonig terms in the curvature en-
then this would lead to a significant simplification of their ergy are required to stabilize the system, a point to which we
dependence on the governing molecular parameters and thgBall return shortly.
make the understanding of ionic surfactant systems relatively The effect of tuning the surface charge density, as de-
straightforward. To this end, in Fig. 6 we plot the moduli aspicted in Fig. 6, does give an interesting indication that the
a function ofo (in a physically reasonable range, withfor ~ three moduli do behave distinctly. The bending modikys
fixed s, uy), for both fixed® andC. The immediate con- does seem to saturate and thus behaves like a “far-field”
clusion is that the three moduli behave in a remarkably difquantity. In the spirit of Manning’s theory, it could well be
ferent fashion and it is onli, that demonstrates a true satu- calculated from the formula of Winterhalter and HelfrieH
ration. We shall discuss this interesting phenomenon in théeéveloped in the Debye-tgkel limit, but with an effective
following section. surface charge density. In contrast,appears to not be fully
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FIG. 6. Dependence of the moduli on the magnitude of the surface charge dendiyts (a)—(c) are for C fixed at 0.M, and
®=0, 0.15, 0.25, 0.3, 0.4, and 0.&))—(f) for ® fixed at 0.2 andC=0, 0.005, 0.02, 0.04, 0.06, 0.08, 0.2, 0.5, andVL.0

saturated, even for=1.6 Cm 2, and saturation fok;H,  energy? We have indicated above that anharmonic terms
seems far off. This hierarchy can in some way be understoorhight well be necessary to stabilize certain systems, support-
from the expressions for the moduli given as E2p). Itis  ing the suggestion of de Vrig24] in regard to passages in
clear thatk;Hg is “more” of a near-field quantity thark,, lamellar phases, and also that made previously by some of us
as the former is the first, while the latter is the second, moin the context of microemulsions and sponge ph&56% In
ment of the same quantitfgssentially the square of the elec- order to rectify this, we show in Fig. 7 plots fag/d(1/R)
tric field). Thus there is a relatively heavy weighting in for the cylindrical geometry, calculated from E®) using a
k.H, for the near-fieldlcondensedcounterions, but this is full numerical solution of the Poisson-Boltzmann equation.
reduced fork.. It is not so clear whyk, behaves as the In Fig. 7(a), we give such plots for the three constraints, for
“farthest-field” quantity, as it depends in a more compli- ®=0.372 andC=0.363M. Plotted also are the predictions
cated way on the planar potential. However, our result®f the harmonic approximation, which appear as tangent
clearly show this to be the case, indicating a subtlety in thdines at the point R=0. Note the deviation as the radius is
consideration of the condensation phenomenon for quantdecreased, but also that evenRat 10 A, there is only ap-
ties, such as the bending moduli, which involve integrationproximately a 10% difference between the full curves and
over the ionic atmosphere. the corresponding harmonic approximations. The difference
A guestion that we have only partially answered so far isis more dramatic for the case of Fig(by, where we have
an important one: In terms of the electrostatic contributionmade a similar plot, but fod=0.5 andC=0.09M. The
how valid is the harmonic approximation to the curvaturedeviations are much sharper and the harmonic approximation
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appeared that deal with systems where a small amount of

=~ -0.018 ionic surfactant is added to a nonionic system and thus the
T o0 aim is to directly measure electrostatic effects. Schuker
< and Strey[55] have made measurements, using light scatter-
g 0022 ing, of the Bragg-peak shift of a nonionic lamellar phase
§, 0.024 upon the addition of ionic surfactant. These results are in a
> regime (small amount of added salt, low surfactant concen-
T -0.026 tration) where our results would be useful for a full analysis
0.028 [56]. Also, we note that Rajagopalast al. [57] have inves-
tigated the effect of adding a small amount of ionic surfac-
002 004 006 008 0.1 tant to a nonionic system; however, these authors offer the
@ VR (A1) alternative interpretation of electrostatic effects as a curva-
-0.012 ture stress on the nonionic monolayer and hence electrostat-
=~ -0.014 ///’ ics and elasticity are effectively decoupled in their treatment.
T 0016 //// So we await further progress on the experimental front.
£ 0018 P There is also more that can be done at the theoretical level.
g 0.02 Some extensions are rela_tlvely straightforward, such as the
= ' allowance for a change in the surface charge density on
§ 0022 bending (corresponding to constant surface potential or
T -0.024 mixed boundary conditionswhile others, such as the ex-
-0.026 plicit calculation of the moduli associated with anharmonic
-0.028 curvature term$27], are much more involved.
0.02 004 006 0.08 0.1
(b) 1/R (A1)

V. CONCLUDING REMARKS

FIG. 7. Plot of the curvature dependence of the full free-energy  \We have, herein, presented results that extend our knowl-
density of the cylindrical geometry(a for ®=0.372 and edge of the dependence of the phenomenological parameters
C=0.36M and(b) »=0.5 andC=0.03M. In both cases, the full  of the flexible surface model on the fundamental quantities
curves, from top to bottom, correspond to the cases of a fixedglevant to jonic surfactant systems. The important conclu-
amount of salt and water, a fixed amount of water and salt chemicaljs, that we have drawn is that the electrostatic contribution
potential, and fixed chemical potentials of both salt and water. Th(?0 the moduli is significantly dependent upon the surfactant
dashed lines are the harmonic approximations to these curves. concentration, even for systems with added salt. We have
also provided perturbative solutions to the Poisson-

oltzmann cell model for cylindrical and spherical systems,

S?r? n Itor:eakfs dt(;]wn as th? t;aslr:us I(:f CL(ervatlire ISh de_crelasel vestigated the effect of counterion condensation on the
other than for the case ol both salt and water chemica por'noduli, and considered the validity of the harmonic approxi-
tentials being fixed, where it remains quite reasonable. Not

) fhation to the electrostatic curvature free energy. All of these

Z\llsol that”the fullnct:urvss f%r ttue rother two constraints Effec'results point to yet another manifestation of the subtlety of

W co aptse Ot od_o € another. i . tal studi electrostatic effects in colloidal systems; despite this we con-

€ how turn to discuss some recent experimental SWAIEs, ,qq that the flexible surface model remains an attractive
that have attempted to measure the bending moduli of ioni

2 Spproach in rationalizing the behavior of surfactants in solu-
surfactant layers. The measurement of the rigidity of surfac—-IOIO 9

tant layers presents considerable difficulties, but recently
progress has been made using various experimental methods.
Kellay et al.[51] give an extensive review of such measure-

ments, in particular cataloging in some detail recent mea- jp. thanks M. Borkovec and P. Schurtenberger for en-
surements ok for AOT systems, and we refer the reader to |ightening discussions and also for their support and encour-

their list of references. The methods used include neutroggement. This work was supported by the Swedish Natural
scattering, the Kerr effect, laséf-jump experiments, and Science Research Coun¢MFR).

time-resolved flourescence quenching. Kellatyal. them-
selves employ ellipsometry to measure the moduli of AOT
droplet systems. However, as shown in the comparison of
results given in Ref[51], the range of reported values for  Here we briefly recount the solution of the PB equation
k., even for exactly the same system, can differ by an ordefor the geometry of two charged planes with intervening salt
of magnitude and are therefore problematic to analyze. Asolution. The treatment here is based on that nsdon and
interesting recent development has been the use of quadrwennerstren [29], where (unlike other studiesit was not

pole splittings in NMR spectra in the measuremenkofor  assumed that an equilibrium existed between the system and
lamellar phases of ionic surfactafi2,53; however, these a reference salt solution, so that the system is self-contained:
measurements as presented are mainly concerned with notinis is the situation most relevant to the current problem. All
electrostatic effects, such as the chain length of added cosusymbols(unless stated otherwisare as defined in Sec. Il of
factant[53]. Kegel et al. [54] have recently used ellipsom- the main text. The boundary conditions are those given in
etry to measure such effects. In contrast, recent papers hatgs. (178 and(170).
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APPENDIX A: PLANAR SOLUTION
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The PB equation for planar geometry is

bo=2(ape?o—e" %), (A1)

where the scaled planar potentig} is zeroed at the mid-
plane[see Fig. 1b)]. By symmetry, we need treat only one-
half of the geometry(This subsystem is in fact the reference
state for the bending perturbation using the cell model, to be

precise) The first integration ofAl) gives

(pp)?=4[e %0—1+ap(e?o—1)]. (A2)

With the substitution sifp=e®, the next integration be-

comes possible and yields

X=Uu—u(0), (A3)

whereu=F(p,ag?) is the incomplete elliptic integral of the
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and in the case of the sphere
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first kind of modulusai’? [42] andu(0) indicates its value at  The final step may be achieved by multiplication of E2).

the surface. It will also be useful to rewrite E&é?2) in terms
of Jacobi elliptic functiong42]

(¢4)?=4 cSudrtu. (A4)

APPENDIX B: DEVELOPMENTS OF THE CURVATURE
EXPANSION AND MODULI FORMULAS

1. Development of the free-energyR dependence integral

Further simplification of Eq(5) may be achieved as fol-

lows. Consider multiplication of Eq(2) by r(d/dr) and
then integration ove¥; thus

d¢_, 479 dy BAY_ 1€ o= BAY
JVdVrdrV Y= - deVrdr(n_e —nje ).
(B1)

Evaluation in the cylindrical case gives

f dV(n® efa4nS e Aav)
\%

R+d

2
=[wr2L[ (n® ef¥+ nie‘ﬁq“’)—ﬁ;—w( (:j—l’r/l) }

R
(B2)

and in the case of the spherical geometry

JVdV(nE e+ nS e A

1
= §,8Eel+

e (dy\?
‘B%(W) ]

4
§7-rr3[ (n® eP4¥4nS e Aav)

R+d
(B3)

R

by dy/dr, followed by one-dimensional integration in

R+d d 4 R+d d
j dr wV2¢=iqf dr—dl(nc_eﬁq‘/’— nS e AIY),
R € R dr

dr
(B6)
so that
Rtd 1/dy)\?
o, ot
_Am g [dy)\?
T & | 8mldr
R+d
+ B 1(n% eP1+nS e~ A (B7)
R

(wherey=1 for the cylinder and¢=2 for the spherg This
is then used to eliminate all of the boundary terms from Eqgs.
(B4) and (B5), thus yielding Eq/(6).

2. Development of the integral form fork_c

In order to obtain Eq(25¢ we proceed as follows. Equa-
tion (24) gives initially for k.

— &€

x [ 4,7+ 20491 244

(B8)

Now, it is clear from(16b) that if one replaces,, a4, and

v, by x4, xaq, and xyy,, theny cancels from the defining
differential equation forg,. Similarly, the boundary condi-
tions ¢41(Dg)=0 andgbj’(0)=0 remain unaltered by such a
change. Now, we discuss the constraints. In the case consid-
ered in Sec. 11 C 1 of constant salt and water chemical po-

This then allows elimination of this term, i.e., the total num- tentials, there isb initio no problem asy; and v, are zero

ber of ionsN, from the right-hand side of E@5), yielding in
the case of the cylindgpof lengthL)

then. In the constants andV case, a combination of Egs.
(17b and(21) to eliminateD; gives
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tive to the above reassignment. Hence the differential equa-
tion, all boundary conditions, and constraints considered be-
ing insensitive to this transformation mean that
dPV=2¢{  This gives Eq(250). We note that Bedeaux
which is again insensitive to the above replacements. Finallyand co-workerg25] have made related observations regard-
in the third case of fixed/ and N, this last equation also ing the independence d&. on perturbations of the planar
applies, along with Eq(23), which is also patently insensi- state.
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